1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
|
(* SIMPLIFICATION PASSES *)
(*
Order of simplifications :
- cascade slices and selects
- simplify stupid things (a xor 0 = a, a and 0 = 0, etc.)
transform k = SLICE i i var into k = SELECT i var
- transform k = SELECT 0 var into k = var when var is also one bit
- look for variables with same equation, put the second to identity
- eliminate k' for each equation k' = k
- eliminate dead equations
These simplifications are run on a topologically sorted list of equations (see main.ml)
*)
open Netlist_ast
module Sset = Set.Make(String)
(* Simplify cascade slicing/selecting *)
let cascade_slices p =
let slices = Hashtbl.create 42 in
let eqs_new = List.map
(fun (n, eq) -> (n, match eq with
| Eslice(u, v, Avar(x)) ->
let nu, nx =
if Hashtbl.mem slices x then begin
let ku, kx = Hashtbl.find slices x in
(ku + u, kx)
end else
(u, x)
in
Hashtbl.add slices n (nu, nx);
Eslice(nu, v, Avar(nx))
| Eselect(u, Avar(x)) ->
begin try
let ku, kx = Hashtbl.find slices x in
Eselect(ku + u, Avar(kx))
with
Not_found -> Eselect(u, Avar(x))
end
| _ -> eq))
p.p_eqs in
{
p_eqs = eqs_new;
p_inputs = p.p_inputs;
p_outputs = p.p_outputs;
p_vars = p.p_vars;
}
(* Simplifies some trivial arithmetic possibilites :
a and 1 = a
a and 0 = 0
a or 1 = 1
a or 0 = a
a xor 0 = a
slice i i x = select i x
*)
let arith_simplify p =
{
p_eqs = List.map
(fun (n, eq) -> match eq with
| Ebinop(Or, Aconst(VBit(false)), x) -> (n, Earg(x))
| Ebinop(Or, Aconst(VBit(true)), x) -> (n, Earg(Aconst(VBit(true))))
| Ebinop(Or, x, Aconst(VBit(false))) -> (n, Earg(x))
| Ebinop(Or, x, Aconst(VBit(true))) -> (n, Earg(Aconst(VBit(true))))
| Ebinop(And, Aconst(VBit(false)), x) -> (n, Earg(Aconst(VBit(false))))
| Ebinop(And, Aconst(VBit(true)), x) -> (n, Earg(x))
| Ebinop(And, x, Aconst(VBit(false))) -> (n, Earg(Aconst(VBit(false))))
| Ebinop(And, x, Aconst(VBit(true))) -> (n, Earg(x))
| Ebinop(Xor, Aconst(VBit(false)), x) -> (n, Earg(x))
| Ebinop(Xor, x, Aconst(VBit(false))) -> (n, Earg(x))
| Eslice(i, j, k) when i = j ->
(n, Eselect(i, k))
| _ -> (n, eq))
p.p_eqs;
p_inputs = p.p_inputs;
p_outputs = p.p_outputs;
p_vars = p.p_vars;
}
(* if x is one bit, then :
select 0 x = x
*)
let select_to_id p =
{
p_eqs = List.map
(fun (n, eq) -> match eq with
| Eselect(0, Avar(id)) when
Env.find id p.p_vars = TBit || Env.find id p.p_vars = TBitArray(1) ->
(n, Earg(Avar(id)))
| _ -> (n, eq))
p.p_eqs;
p_inputs = p.p_inputs;
p_outputs = p.p_outputs;
p_vars = p.p_vars;
}
(*
If a = eqn(v1, v2, ...) and b = eqn(v1, v2, ...) <- the same equation
then say b = a
*)
let same_eq_simplify p =
let id_outputs =
(List.fold_left (fun x k -> Sset.add k x) Sset.empty p.p_outputs) in
let eq_map = Hashtbl.create 42 in
List.iter
(fun (n, eq) -> if Sset.mem n id_outputs then
Hashtbl.add eq_map eq n)
p.p_eqs;
let simplify_eq (n, eq) =
if Sset.mem n id_outputs then
(n, eq)
else if Hashtbl.mem eq_map eq then
(n, Earg(Avar(Hashtbl.find eq_map eq)))
else begin
Hashtbl.add eq_map eq n;
(n, eq)
end
in
let eq2 = List.map simplify_eq p.p_eqs in
{
p_eqs = eq2;
p_inputs = p.p_inputs;
p_outputs = p.p_outputs;
p_vars = p.p_vars;
}
(* Replace one specific variable by another argument in the arguments of all equations
(possibly a constant, possibly another variable)
*)
let eliminate_var var rep p =
let rep_arg = function
| Avar(i) when i = var -> rep
| k -> k
in
let rep_eqs = List.map
(fun (n, eq) -> (n, match eq with
| Earg(a) -> Earg(rep_arg a)
| Ereg(i) when i = var ->
begin match rep with
| Avar(j) -> Ereg(j)
| Aconst(k) -> Earg(Aconst(k))
end
| Ereg(j) -> Ereg(j)
| Enot(a) -> Enot(rep_arg a)
| Ebinop(o, a, b) -> Ebinop(o, rep_arg a, rep_arg b)
| Emux(a, b, c) -> Emux(rep_arg a, rep_arg b, rep_arg c)
| Erom(u, v, a) -> Erom(u, v, rep_arg a)
| Eram(u, v, a, b, c, d) -> Eram(u, v, rep_arg a, rep_arg b, rep_arg c, rep_arg d)
| Econcat(a, b) -> Econcat(rep_arg a, rep_arg b)
| Eslice(u, v, a) -> Eslice(u, v, rep_arg a)
| Eselect(u, a) -> Eselect(u, rep_arg a)
))
p.p_eqs in
{
p_eqs = List.fold_left
(fun x (n, eq) ->
if n = var then x else (n, eq)::x)
[] rep_eqs;
p_inputs = p.p_inputs;
p_outputs = p.p_outputs;
p_vars = Env.remove var p.p_vars;
}
(* Remove all equations of type :
a = b
a = const
(except if a is an output variable)
*)
let rec eliminate_id p =
let id_outputs =
(List.fold_left (fun x k -> Sset.add k x) Sset.empty p.p_outputs) in
let rep =
List.fold_left
(fun x (n, eq) ->
if x = None && (not (Sset.mem n id_outputs)) then
match eq with
| Earg(rarg) ->
Some(n, rarg)
| _ -> None
else
x)
None p.p_eqs in
match rep with
| None -> p, false
| Some(n, rep) -> fst (eliminate_id (eliminate_var n rep p)), true
(* Eliminate dead equations *)
let eliminate_dead p =
p, false (* TODO *)
(* a bit like a topological sort... *)
(* Apply all the simplification passes,
in the order given in the header of this file
*)
let rec simplify p =
let p1 = cascade_slices p in
let p2 = arith_simplify p1 in
let p3 = select_to_id p2 in
let p4 = same_eq_simplify p3 in
let p5, use5 = eliminate_id p4 in
let p6, use6 = eliminate_dead p5 in
let pp = p6 in
if use5 || use6 then simplify pp else pp
|