1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
|
/*
Système Digital
2013-2014
Alex AUVOLAT
load.c Code for loading dumbed-down netlist files
(no parsing of .net files !!)
*/
#include <stdlib.h>
#include "sim.h"
t_value read_bool(FILE *stream, t_value *mask) {
t_value r = 0;
t_value pow = 1;
char c;
if (mask != NULL) *mask = 0;
for(;;) {
fscanf(stream, "%c", &c);
if (c == '1') {
r |= pow;
} else if (c != '0') {
break;
}
if (mask != NULL) (*mask) |= pow;
pow *= 2;
}
return r;
}
void read_arg(FILE *stream, t_arg *dest) {
dest->mask = 0;
if (fscanf(stream, "$%d ", &(dest->SrcVar))) {
// ok, value is read
} else {
dest->Val = read_bool(stream, &dest->mask);
}
}
t_program *load_dumb_netlist (FILE *stream) {
int i, j;
// let us suppose that the input to be read is well-formed.
t_program *p = malloc(sizeof(t_program));
// Read variable list, with sizes and identifiers
fscanf(stream, "%d ", &(p->n_vars));
p->vars = malloc(p->n_vars * sizeof(t_variable));
for (i = 0; i < p->n_vars; i++) {
fscanf(stream, "%d ", &(p->vars[i].size));
for(j = 0; j < p->vars[i].size; j++) {
p->vars[i].mask = (p->vars[i].mask << 1) | 1;
}
p->vars[i].name = malloc(42); // let's bet that the name of a variable will never be longer than 42 chars
fscanf(stream, "%s\n", p->vars[i].name);
if (p->vars[i].size >= 8*sizeof(t_value)) {
fprintf(stderr, "Warning: variable %s might be too big for machine integers.\n", p->vars[i].name);
}
}
// read input list
fscanf(stream, "%d ", &(p->n_inputs));
p->inputs = malloc(p->n_inputs * sizeof(t_id));
for (i = 0; i < p->n_inputs; i++) {
fscanf(stream, "%d ", &(p->inputs[i]));
}
// read output list
fscanf(stream, "%d ", &(p->n_outputs));
p->outputs = malloc(p->n_outputs * sizeof(t_id));
for (i = 0; i < p->n_outputs; i++) {
fscanf(stream, "%d ", &(p->outputs[i]));
}
// read equation list
fscanf(stream, "%d ", &(p->n_eqs));
p->eqs = malloc(p->n_eqs * sizeof(t_equation));
for (i = 0; i < p->n_eqs; i++) {
fscanf(stream, "%d ", &(p->eqs[i].dest_var));
fscanf(stream, "%d ", &(p->eqs[i].type));
switch (p->eqs[i].type) {
case C_ARG:
read_arg(stream, &(p->eqs[i].Arg.a));
break;
case C_REG:
fscanf(stream, "%d ", &(p->eqs[i].Reg.var));
break;
case C_NOT:
read_arg(stream, &(p->eqs[i].Not.a));
break;
case C_BINOP:
fscanf(stream, "%d ", &(p->eqs[i].Binop.op));
read_arg(stream, &(p->eqs[i].Binop.a));
read_arg(stream, &(p->eqs[i].Binop.b));
break;
case C_MUX:
read_arg(stream, &(p->eqs[i].Mux.a));
read_arg(stream, &(p->eqs[i].Mux.b));
read_arg(stream, &(p->eqs[i].Mux.c));
break;
case C_ROM:
fscanf(stream, "%d %d ", &(p->eqs[i].Rom.addr_size), &(p->eqs[i].Rom.word_size));
read_arg(stream, &(p->eqs[i].Rom.read_addr));
break;
case C_RAM:
fscanf(stream, "%d %d ", &(p->eqs[i].Ram.addr_size), &(p->eqs[i].Ram.word_size));
read_arg(stream, &(p->eqs[i].Ram.read_addr));
read_arg(stream, &(p->eqs[i].Ram.write_enable));
read_arg(stream, &(p->eqs[i].Ram.write_addr));
read_arg(stream, &(p->eqs[i].Ram.data));
break;
case C_CONCAT:
read_arg(stream, &(p->eqs[i].Mux.a));
read_arg(stream, &(p->eqs[i].Mux.b));
break;
case C_SLICE:
fscanf(stream, "%d %d ", &(p->eqs[i].Slice.begin), &(p->eqs[i].Slice.end));
read_arg(stream, &(p->eqs[i].Slice.source));
break;
case C_SELECT:
fscanf(stream, "%d ", &(p->eqs[i].Select.i));
read_arg(stream, &(p->eqs[i].Select.source));
break;
}
}
return p;
}
|