summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJonathan <jonathan@jonathan-VirtualBox.(none)>2014-01-11 14:20:17 +0100
committerJonathan <jonathan@jonathan-VirtualBox.(none)>2014-01-11 14:20:17 +0100
commit7d609caeaddfcad665fe1142b074308694ddb909 (patch)
treed7f47810b0dd9579635fb806e80a8e0cfacbe697
parent7a2e8c69cb4a4407261f11dd36374273d1fc5a28 (diff)
downloadSystDigit-Projet-7d609caeaddfcad665fe1142b074308694ddb909.tar.gz
SystDigit-Projet-7d609caeaddfcad665fe1142b074308694ddb909.zip
implemented a buggy division algorithm
-rw-r--r--cpu/alu.ml125
1 files changed, 104 insertions, 21 deletions
diff --git a/cpu/alu.ml b/cpu/alu.ml
index ff98c23..b76133f 100644
--- a/cpu/alu.ml
+++ b/cpu/alu.ml
@@ -62,6 +62,36 @@ let rec nsubber n a b =
+(* Comparisons *)
+
+let rec eq_n n a b =
+ all1 n (not (a ^^ b))
+
+let rec ne_n n a b =
+ nonnull n (a ^^ b)
+
+let rec lt_n n a b =
+ const "0" (* TODO : less than *)
+
+let rec ult_n n a b =
+ const "0" (* TODO : less than, unsigned *)
+
+let rec le_n n a b =
+ const "0" (* TODO : less than or equal *)
+
+let rec ule_n n a b =
+ if n = 0 then const "1" else
+ mux ((eq_c 1 (a ** (n-1)) 1) ^& (eq_c 1 (b ** (n-1)) 0))
+ (mux ((eq_c 1 (a ** (n-1)) 0) ^& (eq_c 1 (b ** (n-1)) 1))
+ (ule_n (n-1) (a % (0, n-2)) (b % (0, n-2)))
+ (const "1")
+ )
+ (const "0")
+
+
+
+
+
(* Some operations on Redundant Binary Representation
Each binary digit is encoded on 2 bits
@@ -119,6 +149,11 @@ let rec split_list = function
| [_] -> assert false
| x::y::tl -> let a, b = split_list tl in x::a, y::b
+
+
+(* Décalage de 1 bit vers les poids forts (multiplication par deux) *)
+let shiftl1 n a = const "0" ++ (a % (0, n-2))
+
let nmulu n a b start_signal =
let next_busy, set_next_busy = loop 1 in
let busy = start_signal ^| (reg 1 next_busy) in
@@ -130,7 +165,7 @@ let nmulu n a b start_signal =
(* 'adde' est initialisé à a étendu sur 32 bits au début de la multiplication,
puis à chaque cycle est shifté de 1 bit vers la gauche (donc multiplié par 2) *)
let adde, set_adde = loop (2*n) in
- let adde = set_adde (mux start_signal (const "0" ++ ((reg (2*n) adde) % (0, 2*n-2))) (a ++ (zeroes n))) in
+ let adde = set_adde (mux start_signal (shiftl1 (2*n) (reg (2*n) adde)) (a ++ (zeroes n))) in
(* 'res' est un accumulateur qui contient le résultat que l'on calcule,
il est initialisé à 0 au début de la multiplication, et à chaque cycle
@@ -148,9 +183,75 @@ let nmulu n a b start_signal =
+
+
let rec ndivu n a b start_signal =
- zeroes (n-3) ++ const "110", zeroes (n-3) ++ const "110", start_signal
- (* TODO : unsigned division, returns quotient and remainder *)
+
+ let next_busy, set_next_busy = loop 1 in
+ let busy = start_signal ^| (reg 1 next_busy) in
+
+ let dd, set_dd = loop n in (* dividande *)
+ let q , set_q = loop n in (* quotient *)
+ let r , set_r = loop n in (* reste *)
+
+ (* L'algorithme doit se poursuivre sur n cycles
+ exactement. c est une constante sur n bits, composée
+ uniquement de 1, qui est décalée à chaque étape, si
+ bien que le calcul est terminé quand c vaut 0 *)
+
+ let c , set_c = loop n in
+
+
+
+
+ (* On définit la concaténée des nouvelles valeurs de dd, q, r, et c *)
+
+ let ddqrc = set_dd (
+ mux start_signal
+ (* A chaque nouvelle étape *)
+ (
+
+ (* A l'itération i (i = 0 ... n - 1) Le bit de poids fort de [dd]
+ correspond au bit (n-i-1) du dividande original *)
+ (shiftl1 n (reg n dd)) ++
+ q ++ (* Le quotient reste pour l'instant inchangé *)
+ ((dd ** (n-1)) ++ ((reg n r) % (0, n-2))) ++ (* On abaisse le bit (n-i-1) du dividande *)
+ shiftl1 n c (* on décale c *)
+ )
+
+ (* Initialisation *)
+ ((a) ++ (zeroes n) ++ (zeroes n) ++ (rep n (const "1"))) )
+ in
+
+ let dd = set_dd (ddqrc % (0, n-1)) in
+ let q' = (ddqrc % (n, 2*n-1)) in
+ let r' = (ddqrc % (2*n, 3*n-1)) in
+ let c = set_c (ddqrc % (3*n, 4*n-1)) in
+
+
+ (* Si r >= d alors r := r - d et q(n-i-1) := 1 *)
+ let rq = mux (ule_n n b r')
+ (r' ++ (const "0") ++ ((reg n q') % (0, n-2)))
+ ((nsubber n r' b) ++ (const "1") ++ ((reg n q') % (0, n-2))) in
+
+ let r = set_r (rq % (0, n-1)) in
+ let q = set_q (rq % (n, 2*n-1)) in
+
+ let work_remains = nonnull n c in
+
+ let finished =
+ set_next_busy (busy ^& work_remains) ^.
+ (not work_remains) ^& busy in
+
+ dd ^. c ^.
+ q, r, finished
+
+
+
+(* zeroes (n-3) ++ const "110", zeroes (n-3) ++ const "110",
+ start_signal *)
+(* TODO : unsigned division, returns quotient and remainder *)
+
let rec nmul n a b start_signal =
zeroes (n-3) ++ const "101", zeroes (n-3) ++ const "101", start_signal
@@ -176,25 +277,7 @@ let op_lsr n a b =
let op_asr n a b =
a (* TODO (b unsigned size n) *)
-(* Comparisons *)
-let rec eq_n n a b =
- all1 n (not (a ^^ b))
-
-let rec ne_n n a b =
- nonnull n (a ^^ b)
-
-let rec lt_n n a b =
- const "0" (* TODO : less than *)
-
-let rec ult_n n a b =
- const "0" (* TODO : less than, unsigned *)
-
-let rec le_n n a b =
- const "0" (* TODO : less than or equal *)
-
-let rec ule_n n a b =
- const "0" (* TODO : less than or equal, unsigned *)
(* Big pieces *)