diff options
author | Alex AUVOLAT <alex.auvolat@ens.fr> | 2014-01-10 15:07:34 +0100 |
---|---|---|
committer | Alex AUVOLAT <alex.auvolat@ens.fr> | 2014-01-10 15:07:34 +0100 |
commit | 6de7ebfc3fa320b639a292a174f213005d5ce2c2 (patch) | |
tree | dd290bad14f5326b49a2dffefe82c1fdd01af961 | |
parent | 25e1beee38cba662f62f2de85855091a4e718064 (diff) | |
download | SystDigit-Projet-6de7ebfc3fa320b639a292a174f213005d5ce2c2.tar.gz SystDigit-Projet-6de7ebfc3fa320b639a292a174f213005d5ce2c2.zip |
Unsigned multiplication works (uses as many cycles as necessary) ; unit tests.
-rw-r--r-- | cpu/alu.ml | 54 | ||||
-rw-r--r-- | cpu/cpu.ml | 7 | ||||
-rw-r--r-- | cpu/os.asm | 36 |
3 files changed, 72 insertions, 25 deletions
@@ -119,35 +119,47 @@ let rec split_list = function | [_] -> assert false | x::y::tl -> let a, b = split_list tl in x::a, y::b -(* n must be a power of two *) let nmulu n a b start_signal = let next_busy, set_next_busy = loop 1 in let busy = start_signal ^| (reg 1 next_busy) in + (* 'mule' est intialisé à b au début de la multiplication, + puis à chaque cycle est shifté de 1 bit vers la droite (donc perd le bit de poid faible) *) + let mule, set_mule = loop n in + let mule = set_mule (mux start_signal (((reg n mule) % (1, n-1)) ++ const "0") b) in + (* 'adde' est initialisé à a étendu sur 32 bits au début de la multiplication, + puis à chaque cycle est shifté de 1 bit vers la gauche (donc multiplié par 2) *) + let adde, set_adde = loop (2*n) in + let adde = set_adde (mux start_signal (const "0" ++ ((reg (2*n) adde) % (0, 2*n-2))) (a ++ (zeroes n))) in + + (* 'res' est un accumulateur qui contient le résultat que l'on calcule, + il est initialisé à 0 au début de la multiplication, et à chaque cycle + si mule[0] est non nul, on lui rajoute adde (c'est correct) *) let res, set_res = loop (2*n) in - let t_res = mux start_signal (const "0" ++ ((reg (2*n) res) % (0, 2*n-2))) (zeroes (2*n)) in - let mul, set_mul = loop n in - let mul = set_mul (mux start_signal (((reg n mul) % (1, n-1)) ++ const "0") b) in - let add = nonnull n mul in - let res = set_res (mux add t_res (nadder (2*n) (a ++ zeroes n) t_res)) in + let t_res = mux start_signal (reg (2*n) res) (zeroes (2*n)) in + let res = set_res (mux (mule ** 0) t_res (nadder (2*n) adde t_res)) in + let work_remains = nonnull (n - 1) (mule % (1, n-1)) in let finished = - set_next_busy (busy ^& add) ^. - (not add) ^& busy in + set_next_busy (busy ^& work_remains) ^. + (not work_remains) ^& busy in res % (0, n-1), res % (n, 2*n-1), finished let rec ndivu n a b start_signal = - zeroes n, zeroes n, start_signal (* TODO : unsigned division, returns quotient and remainder *) + zeroes (n-3) ++ const "110", zeroes (n-3) ++ const "110", start_signal + (* TODO : unsigned division, returns quotient and remainder *) let rec nmul n a b start_signal = - zeroes n, zeroes n, start_signal (* TODO : signed multiplication ; returns low part and high part *) + zeroes (n-3) ++ const "101", zeroes (n-3) ++ const "101", start_signal + (* TODO : signed multiplication ; returns low part and high part *) let rec ndiv n a b start_signal = - zeroes n, zeroes n, start_signal (* TODO : signed division *) + zeroes (n - 3) ++ const "011", zeroes (n - 3) ++ const "011", start_signal + (* TODO : signed division *) (* Shifts *) @@ -205,7 +217,7 @@ let alu_comparer n f0 f a b = let lte = mux (f ** 1) lte_signed lte_unsigned in mux f0 eq_ne lte -let alu_arith f1 f a b start_signal = +let alu_arith f0 f a b start_signal = (* See table for ALU below *) let add = nadder 16 a b in let sub = nsubber 16 a b in @@ -218,17 +230,17 @@ let alu_arith f1 f a b start_signal = let q03 = mux (f ** 0) mulu divu in let q10 = mux (f ** 1) q00 q01 in let q11 = mux (f ** 1) q00 q03 in - let q = mux f1 q10 q11 in + let q = mux f0 q10 q11 in let r01 = mux (f ** 0) mul2 div2 in let r03 = mux (f ** 0) mulu2 divu2 in let r10 = mux (f ** 1) (zeroes 16) r01 in let r11 = mux (f ** 1) (zeroes 16) r03 in - let r = mux f1 r10 r11 in + let r = mux f0 r10 r11 in let s01 = mux (f ** 0) mul_end_signal div_end_signal in let s03 = mux (f ** 0) mulu_end_signal divu_end_signal in let s10 = mux (f ** 1) start_signal s01 in let s11 = mux (f ** 1) start_signal s03 in - let end_signal = mux f1 s10 s11 in + let end_signal = mux f0 s10 s11 in q, r, end_signal let alu_logic f a b = @@ -244,7 +256,7 @@ let alu_shifts f a b = let alu f1 f0 f a b start_signal = (* - f0 f1 f action + f1 f0 f action -- -- - ------ 0 0 0 add 0 0 1 sub @@ -263,13 +275,13 @@ let alu f1 f0 f a b start_signal = 1 1 2 lsr 1 1 3 asr *) - let arith, arith_r, arith_end_signal = alu_arith f1 f a b start_signal in + let arith, arith_r, arith_end_signal = alu_arith f0 f a b start_signal in let logic = alu_logic f a b in let shifts = alu_shifts f a b in - let q0 = mux f1 logic shifts in - let s = mux f0 arith q0 in - let r = mux f0 arith_r (zeroes 16) in - let end_signal = mux f0 arith_end_signal start_signal in + let q0 = mux f0 logic shifts in + let s = mux f1 arith q0 in + let r = mux f1 arith_r (zeroes 16) in + let end_signal = mux f1 arith_end_signal start_signal in s, r, end_signal @@ -154,8 +154,8 @@ let rl, rh, i, ex, exf, pc = (* instruction : add/sub/mul/div/unsigned/or/and/xor/nor/lsl/lsr/asr *) let instr_alu = eq_c 3 (i_i % (2, 4)) 0b000 in - let f0 = i_i ** 0 in let f1 = i_i ** 1 in + let f0 = i_i ** 0 in let double_instr_alu = instr_alu ^& (not f1) ^& (i_f ** 1) ^& (ne_n 3 i_r (const "101")) in let alu_d1, alu_d2, instr_alu_finished = alu f1 f0 i_f v_ra v_rb (exec ^& instr_alu) in @@ -278,6 +278,11 @@ let rl, rh, i, ex, exf, pc = ( (* lil *) i_id ++ (mux instr_lixz (v_r % (8, 15)) (zeroes 8))) ( (* liu *) (mux instr_lixz (v_r % (0, 7)) (zeroes 8)) ++ i_id)) in + (* instruction : lie *) + let instr_lie = eq_c 5 i_i 0b11100 in + let wr = mux instr_lie wr i_r in + let rwd= mux instr_lie rwd (sign_extend 8 16 i_id) in + save_cpu_regs wr rwd ^. save_ram_read (cpu_ram ra we wa d) ^. save_next_read exec_finished ^. @@ -141,7 +141,7 @@ t3fail: pop RA jr RA -unit_test_0: +unit_test_0: # Addition / substraction li B 1 li C 12 @@ -150,16 +150,46 @@ unit_test_0: sei A C 56 and B B A - li C -7 + li C 7 + sub C Z C li D 7 add C C D se A C Z and B B A + li C 32767 + li D 32767 + add C C D + li D 2 + sub D Z D + se A C D + and B B A + jr RA -unit_test_1: + +unit_test_1: # Unsigned multiplication li B 1 + + li C 12 + li D 44 + mulu C C D + move D E + sei A C 528 + and B B A + se A D Z + and B B A + + li C 744 + li D 1244 + mulu C C D + move D E + sei A C 8032 + and B B A + sei A D 14 + and B B A + jr RA + unit_test_2: li B 1 jr RA |