summaryrefslogtreecommitdiff
path: root/abstract/intervals_domain.ml
blob: 06c5e5713fb85e870442f917654eed33fcc4d71c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
open Value_domain

module Intervals : VALUE_DOMAIN = struct
    type bound = Int of Z.t | PInf | MInf

    type t = Itv of bound * bound | Bot

    (* utilities *)
    let bound_leq a b =   (* a <= b ? *)
        match a, b with
        | MInf, _ | _, PInf -> true
        | Int a, Int b -> Z.leq a b
        | x, y -> x = y

    let bound_add a b =
        match a, b with
        | MInf, Int a | Int a, MInf -> MInf
        | PInf, Int a | Int a, PInf -> PInf
        | MInf, MInf -> MInf
        | PInf, PInf -> PInf
        | Int a, Int b -> Int (Z.add a b)
        | _ -> assert false
    let bound_mul a b =
        match a, b with
        | PInf, Int(x) | Int(x), PInf ->
            if x > Z.zero then PInf
            else if x < Z.zero then MInf
            else Int Z.zero
        | MInf, Int(x) | Int(x), MInf ->
            if x < Z.zero then PInf
            else if x > Z.zero then MInf
            else Int Z.zero
        | Int(x), Int(y) -> Int(Z.mul x y)
        | MInf, PInf | PInf, MInf -> MInf
        | MInf, MInf | PInf, PInf -> PInf
	let bound_div a b =
		match a, b with
		| _, PInf | _, MInf -> Int Z.zero
		| PInf, Int i ->
			if i < Z.zero then MInf
			else PInf
		| MInf, Int i ->
			if i < Z.zero then PInf
			else MInf
		| Int i, Int j ->
			assert (j != Z.zero);
			Int (Z.div i j)


    let bound_min a b = match a, b with
        | MInf, _ | _, MInf -> MInf
        | Int a, Int b -> Int (min a b)
        | Int a, PInf -> Int a
        | PInf, Int a -> Int a
        | PInf, PInf -> PInf
    let bound_max a b = match a, b with
        | PInf, _ | _, PInf -> PInf
        | Int a, Int b -> Int (max a b)
        | Int a, MInf | MInf, Int a -> Int a
        | MInf, MInf -> MInf

    let bound_neg = function
        | PInf -> MInf
        | MInf -> PInf
        | Int i -> Int (Z.neg i)
	
	let bound_abs a = bound_max a (bound_neg a)

    (* implementation *)
    let top = Itv(MInf, PInf)
    let bottom = Bot
    let const i = Itv(Int i, Int i)
    let rand i j =
    if Z.leq i j then Itv(Int i, Int j) else Bot

    let subset a b = match a, b with
        | Bot, _ -> true
        | _, Bot -> false
        | Itv(a, b), Itv(c, d) -> bound_leq a c && bound_leq d b

    let join a b = match a, b with
        | Bot, x | x, Bot -> x
        | Itv(a, b), Itv(c, d) -> Itv(bound_min a c, bound_max b d)

    let meet a b = match a, b with
        | Bot, x | x, Bot -> Bot
        | Itv(a, b), Itv(c, d) ->
            let u, v = bound_max a c, bound_min b d in
            if bound_leq u v
            then Itv(u, v)
            else Bot

    let widen a b = match a, b with
        | x, Bot | Bot, x -> x
        | Itv(a, b), Itv(c, d) ->
            Itv(
            (if not (bound_leq a c) then MInf else a),
            (if not (bound_leq d b) then PInf else b))

    let neg = function
        | Bot -> Bot
        | Itv(a, b) -> Itv(bound_neg b, bound_neg a)
    let add a b = match a, b with
        | Bot, _ | _, Bot -> Bot
        | Itv(a, b), Itv(c, d) -> Itv(bound_add a c, bound_add b d)
    let sub a b = match a, b with
        | Bot, _ | _, Bot -> Bot
        | Itv(a, b), Itv(c, d) -> Itv(bound_add a (bound_neg d), bound_add b (bound_neg c))
    let mul a b = match a, b with
        | Bot, _ | _, Bot -> Bot
        | Itv(a, b), Itv(c, d) ->
            Itv(
                (bound_min (bound_min (bound_mul a c) (bound_mul a d))
                            (bound_min (bound_mul b c) (bound_mul b d))),
                (bound_max (bound_max (bound_mul a c) (bound_mul a d))
                            (bound_max (bound_mul b c) (bound_mul b d))))
    let div a b = match a, b with
        | Bot, _ -> Bot
        | Itv(a, b), q ->
			let p1 = match meet q (Itv(Int (Z.of_int 1), PInf)) with
				| Bot -> Bot
				| Itv(c, d) ->
					Itv(min (bound_div a c) (bound_div a d), max (bound_div b c) (bound_div b d))
			in
			let p2 = match meet q (Itv(MInf, Int (Z.of_int (-1)))) with
				| Bot -> Bot
				| Itv(c, d) ->
					Itv(min (bound_div b c) (bound_div b d), max (bound_div a c) (bound_div a d))
			in
			join p1 p2
    let rem a b = match a, b with
        | Bot, _ | _, Bot -> Bot
        | Itv(a, b), Itv(c, d) ->
			Itv(
				Int Z.zero,
				bound_max (bound_abs c) (bound_abs d)
			)

    let leq a b = match a, b with
        | Bot, _ | _, Bot -> Bot, Bot
        | Itv(a, b), Itv(c, d) ->
            if not (bound_leq a d)
            then Bot, Bot
            else Itv(a, bound_min b d), Itv(bound_max a c, d)

    let bound_str = function
        | MInf -> "-oo"
        | PInf -> "+oo"
        | Int i -> Z.to_string i
    let to_string = function
        | Bot -> "bot"
        | Itv(a, b) -> "[" ^ (bound_str a) ^ ";" ^ (bound_str b) ^ "]"

end