1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
|
#include <deque>
#include <iostream>
#include "problem.hpp"
using namespace std;
// ===================================== //
// IMPLEMENTATION FOR CLASS HILARE_A_MVT //
// ===================================== //
double hilare_a_mvt::length() {
// returns length traveled by the car
if (is_arc) return fabs(domega) * (center - from.pos()).norm();
return ds ;
}
bool hilare_a::intersects(const obstacle &o) const {
if((pos()-o.c.c).norm() < o.c.r + param->r_c_car)return true ;
if((pos_trolley()-o.c.c).norm() < o.c.r + param->r_c_trolley)return true ;
if(segment(pos(),pos_trolley()).dist(o.c.c) < o.c.r)return true ;
return false ;
}
bool hilare_a::intersects(const problem &o) const {
for (auto& a: o.obstacles) {
if (intersects(a)) return true;
}
return false ;
}
bool hilare_a_mvt::intersects(const obstacle &o) const {
hilare_a_param *p = from.param;
vec pos_init = from.pos();
vec pos_init_trolley = from.pos_trolley();
if (from.intersects(o)) return true;
if (to.intersects(o)) return true;
if(is_arc){
double r_min =
min((pos_init - center).norm()-(p->r_c_car),
(pos_init_trolley - center).norm()-(p->r_c_trolley));
double r_max =
max((pos_init - center).norm()+(p->r_c_car),
(pos_init_trolley - center).norm()+(p->r_c_trolley));
//TODO
double theta1;
double theta2;
if (domega>=0) {
if(from.phi > 0){
theta1 = (from.pos()-center).angle();
theta2 = (to.pos_trolley()-center).angle();
}
else {
theta1 = (from.pos_trolley()-center).angle();
theta2 = (to.pos()-center).angle();
}
}
else {
if(from.phi > 0){ //TODO ??
theta2 = (from.pos()-center).angle();
theta1 = (to.pos_trolley()-center).angle();
}
else {
theta2 = (from.pos_trolley()-center).angle();
theta1 = (to.pos()-center).angle();
}
}
theta2 = canon_angle(theta1,theta2);
angular_sector sector = angular_sector(circarc(circle(center,r_min), theta1, theta2), circarc(circle(center,r_max), theta1, theta2));
if (sector.dist(o.c.c)<=o.c.r)return true;
return false;
}
if (o.c.r + p->r_c_car >= segment(from.pos(),to.pos()).dist(o.c.c)) return true ;
if (o.c.r + p->r_c_trolley >= segment(from.pos_trolley(),to.pos_trolley()).dist(o.c.c)) return true ;
return false;
}
bool hilare_a_mvt::intersects(const problem &p) const {
for (auto& i: p.obstacles) {
if (intersects(i)) return true;
}
return false;
}
// ================================= //
// IMPLEMENTATION FOR CLASS SOLUTION //
// ================================= //
vector<solution> solution::direct_sol(const hilare_a &pos_a, const hilare_a &pos_b) {
vector<solution> ret;
// première famille de mouvements :
// - trouver les quatre droites tangentes aux deux cercles canoniques
// - pour chacune de ces droites, se mettre dessus, aller droit, s'en séparer
// (vérifier la cohérence : il n'y en a que deux qui sont dans le bon sens !)
// cas où la position de départ ou d'arrivée n'a pas pour courbe canonique un cercle : se tourner de pi/6 par exemple
// (ce cas n'arrivera pas, car on tire complètement au hasard...)
// calcul des centres des courbes canoniques
vec cca = pos_a.canon_curve_center();
double rca = (cca - pos_a.pos_trolley()).norm();
vec ccb = pos_b.canon_curve_center();
double rcb = (ccb - pos_b.pos_trolley()).norm();
int eps[4][2] = { { 1, 1 }, { 1, -1 }, { -1, 1 }, { -1, -1 } };
double delta = cca.x * ccb.y - cca.y * ccb.x;
if (delta == 0) return ret; // no solution in this case, we count on direct_sol_r
for (int i_eps = 0; i_eps < 4; i_eps++) {
int ea = eps[i_eps][0];
int eb = eps[i_eps][1];
double xc = cca.x, yc = cca.y, xcp = ccb.x, ycp = ccb.y;
double a0 = (ea * rca - eb * rcb) / (xc - xcp);
double b0 = 0;
double c0 = (ea * rca - xc * a0);
double delta = xc * ycp - xcp * yc;
double a = (yc - ycp) / delta;
double b = (xcp - xc) / delta;
double c = 1;
double di = a * a0 * a * a0 - (a0 * a0 - 1) * (a * a + b * b);
if (di < 0) continue;
double lambda = (-a * a0 + sqrt(di)) / (a * a + b * b);
line l(a0 + lambda * a, b0 + lambda * b, c0 + lambda * c);
vec v = l.proj(cca);
vec w = l.proj(ccb);
double domega1 = (v - cca).angle() - (pos_a.pos_trolley() - cca).angle();
if (domega1 > M_PI) domega1 -= 2 * M_PI;
if (domega1 < -M_PI) domega1 += 2 * M_PI;
double dtheta1 = pos_a.phi;
double dtheta2 = -pos_b.phi;
double domega2 = (pos_b.pos_trolley() - ccb).angle() - (w - ccb).angle();
if (domega2 > M_PI) domega2 -= 2 * M_PI;
if (domega2 < -M_PI) domega2 += 2 * M_PI;
double xx = pos_a.theta + domega1 + dtheta1 + dtheta2 + domega2 - pos_b.theta;
if (fabs(xx) < 0.01 || fabs(xx - 2*M_PI) < 0.01 || fabs(xx + 2*M_PI) < 0.01) {
vector<hilare_a_mvt> sol;
vec p1 = cca + vec::from_polar((pos_a.pos() - cca).norm(), (pos_a.pos() - cca).angle() + domega1);
vec p2 = ccb + vec::from_polar((pos_b.pos() - ccb).norm(), (pos_b.pos() - ccb).angle() - domega2);
hilare_a_mvt r1;
r1.dtheta_before = 0;
r1.is_arc = true;
r1.center = cca;
r1.domega = domega1;
r1.from = pos_a;
r1.to = pos_a;
r1.to.x = p1.x; r1.to.y = p1.y;
r1.to.theta = r1.from.theta + domega1;
sol.push_back(r1);
hilare_a_mvt t;
t.is_arc = false;
t.ds = (w - v).norm();
t.dtheta_before = r1.to.phi;
t.from = r1.to;
t.to = t.from; t.to.theta = t.from.theta + t.dtheta_before;
t.to.x = p2.x; t.to.y = p2.y; t.to.phi = 0;
sol.push_back(t);
hilare_a_mvt r2;
r2.from = t.to;
r2.to = pos_b;
r2.is_arc = true;
r2.dtheta_before = -pos_b.phi;
r2.center = ccb;
r2.domega = domega2;
sol.push_back(r2);
ret.push_back(sol);
}
}
return ret;
}
std::vector<solution> solution::direct_sol_r(const hilare_a &pos_a, const hilare_a &pos_b) {
std::vector<solution> ret = direct_sol(pos_a, pos_b);
const int nnn = 8;
const double xa[nnn] = { -1, -0.8, -0.6, -0.4, 0.4, 0.6, 0.8, 1 };
for (int aaa = 0; aaa < nnn; aaa++) {
double dtha = xa[aaa];
for (int bbb = 0; bbb < nnn; bbb++) {
double dthb = xa[bbb];
hilare_a pos_a_2 = pos_a;
pos_a_2.theta += dtha;
pos_a_2.phi -= dtha;
hilare_a pos_b_2 = pos_b;
pos_b_2.theta -= dthb;
pos_b_2.phi += dthb;
vector<solution> ss = direct_sol(pos_a_2, pos_b_2);
for (auto& s: ss) {
vector<hilare_a_mvt> mvt;
hilare_a_mvt rb;
rb.from = pos_a;
rb.to = pos_a_2;
rb.dtheta_before = dtha;
rb.is_arc = false;
rb.ds = 0;
mvt.push_back(rb);
mvt.insert(mvt.end(), s.movement.begin(), s.movement.end());
hilare_a_mvt ra;
ra.from = pos_b_2;
ra.to = pos_b;
ra.dtheta_before = dthb;
ra.is_arc = false;
ra.ds = 0;
mvt.push_back(ra);
ret.push_back(solution(mvt));
}
}
}
return ret;
}
bool solution::intersects(const problem &p) const {
for (auto& x: movement) {
if (x.intersects(p)) return true;
}
return false;
}
double solution::length() {
double x = 0;
for (auto& m: movement) {
x += m.length();
}
return x;
}
// =============================== //
// IMPLEMENTATION FOR CLASS SOLVER //
// =============================== //
solver::solver() : _worker(&solver::run, this) {
_running = false;
_done = false;
_please_stop = false;
}
void solver::start(const problem &p) {
_p = p;
if (_running) {
_please_stop = true;
_worker.wait();
}
_please_stop = false;
_done = false;
_running = true;
_worker.launch();
}
void solver::run() {
problem p = _p; // copy problem
solver_internal d;
d.initialize(p);
{
sf::Lock l(_d_lock);
_d = d;
}
int i = 0;
while (!_please_stop && (i++) < 300) {
solution s = d.try_find_solution();
if (s.movement.size() > 0) {
_s = s;
_done = true;
break;
}
if (_please_stop) break;
d.step(p);
// Write local results to guys outside
{
sf::Lock l(_d_lock);
_d = d;
}
}
_running = false;
}
bool solver::finished() {
return _done;
}
solution solver::get_solution() {
if (_done) return _s;
return solution();
}
solver_internal solver::peek_internal() {
solver_internal x;
{
sf::Lock l(_d_lock);
x = _d;
}
return x;
}
void solver_internal::initialize(const problem &p) {
cout << "Initializing solver..." << endl;
paths.clear();
pts.clear();
pts.push_back(p.begin_pos);
pts.push_back(p.end_pos);
find_direct_path(0, 1, p);
}
solution solver_internal::try_find_solution() {
cout << "Looking for solution in current graph..." << endl;
// Simple graph search algorithm
vector<int> par(pts.size(), -1);
deque<int> q;
par[0] = 0;
q.push_back(0);
while (!q.empty()) {
int x = q.front();
q.pop_front();
if (paths.find(x) != paths.end()) {
auto pp = paths.find(x)->second;
for (auto& kv: pp) {
int y = kv.first;
if (par[y] == -1) {
par[y] = x;
q.push_back(y);
}
}
}
}
if (par[1] != -1) {
cout << "...found!" << endl;
vector<hilare_a_mvt> sol;
int b = 1;
while (b != 0) {
int a = par[b];
auto& x = paths[a][b];
sol.insert(sol.begin(), x.movement.begin(), x.movement.end());
b = a;
}
return solution(sol);
}
cout << "...not found." << endl;
return solution(); // not found
}
void solver_internal::step(const problem &p) {
cout << "Solver step..." << endl;
// take new random point
hilare_a rp = p.begin_pos;
do {
double min_x = -200, min_y = -200;
double max_x = 200, max_y = 200;
for (auto& o: p.obstacles) {
if (o.c.c.x < min_x) min_x = o.c.c.x;
if (o.c.c.y < min_y) min_y = o.c.c.y;
if (o.c.c.x > max_x) max_x = o.c.c.x;
if (o.c.c.y > max_y) max_y = o.c.c.y;
}
rp.x = frand(min_x, max_x);
rp.y = frand(min_y, max_y);
rp.theta = frand(-M_PI, M_PI);
rp.phi = frand(-M_PI, M_PI);
} while (rp.intersects(p));
pts.push_back(rp);
// try to connect to all existing points
for (unsigned i = 0; i < pts.size() - 1; i++) {
find_direct_path(i, pts.size() - 1, p);
find_direct_path(pts.size() - 1, i, p);
}
}
void solver_internal::find_direct_path(int a, int b, const problem &p) {
vector<solution> s = solution::direct_sol_r(pts[a], pts[b]);
int best = -1;
for (unsigned k = 0; k < s.size(); k++) {
if (s[k].movement.size() > 0 && !s[k].intersects(p)) {
if (best == -1 || s[k].length() < s[best].length()) best = k;
}
}
if (best != -1) paths[a][b] = s[best];
}
/* vim: set ts=4 sw=4 tw=0 noet :*/
|