open Ast
(* Gestion des erreurs *)
exception Error of string
exception LocError of loc * string
let ty_assert x k = if not x then raise (Error (k))
let ty_error k = raise (Error (k))
let err_add_loc loc f =
try f()
with
| Error(k) -> raise (LocError(loc, k))
| LocError(_, _) as e -> raise e
| Assert_failure (k, a, b) -> raise (LocError (loc,
"(unexpected) Assertion failure: "^k^" at "^(string_of_int a)^":"^(string_of_int b)))
| Not_found -> raise (LocError (loc, "(unexpected) Not found"))
| Invalid_argument(k) -> raise (LocError (loc, "(unexpected) Invalid argument: "^k))
| Match_failure(k, a, b) -> raise (LocError (loc,
"(unexpected) Match failure: "^k^" at "^(string_of_int a)^":"^(string_of_int b)))
| _ -> raise (LocError (loc, "(unexpected) Other error"))
(* AST typés *)
module Smap = Map.Make(String)
type typ =
| T_Int
| Typenull
| T_Void
| TClass of tident
| TPoint of typ
type type_ref = typ * bool
(* type d'une variable, avec ref? *)
type texpression = {
te_loc: loc;
te_desc: texpr_desc;
type_expr : typ*bool*bool; (* Type, référence?, valeur gauche? *)
}
and texpr_desc =
| TEInt of int
| TENull
| TEThis
| TEIdent of ident
| TEAssign of texpression * texpression
| TECallFun of ident * texpression list (* changé : te -> ident *)
| TECallMethod of texpression * ident * texpression list (* changé : te -> ident *)
| TEUnary of unop * texpression
| TEBinary of texpression * binop * texpression
| TEMember of texpression * ident
| TENew of tcls * tproto option * texpression list
and tstr_expression =
| TSEExpr of texpression
| TSEStr of string
and tstatement = {
ts_loc: loc;
ts_desc: ts_desc;
}
and ts_desc =
| TSEmpty
| TSExpr of texpression
| TSIf of texpression * tstatement * tstatement
| TSWhile of texpression * tstatement
| TSFor of texpression list * texpression option * texpression list * tstatement
| TSBlock of tblock
| TSReturn of texpression option
| TSDeclare of type_ref * ident
| TSDeclareAssignExpr of type_ref * ident * texpression
| TSDeclareAssignConstructor of type_ref * ident * tident * texpression list (* a faire *)
(* Type of variable, variable name, constructor class name, constructor arguments *)
| TSWriteCout of tstr_expression list
and tblock = tstatement list
and tproto = {
tp_virtual : bool; (* only used for class methods *)
tp_loc : loc;
tp_name : ident;
tp_class : tident option; (* p_class = none : standalone function *)
tp_ret_type : type_ref option; (* p_class = some and p_ret_type = none : constructor *)
tp_args : (type_ref * ident) list;
}
and tcls = {
tc_name : tident;
tc_supers : tident list;
tc_members : typ Smap.t;
tc_methods : tproto list;
}
type env = {
e_globals : typ Smap.t;
e_funs : tproto list;
e_classes : tcls Smap.t;
}
and benv = {
b_pe : env;
b_locals : type_ref Smap.t;
b_class : tcls option;
}
type tdeclaration =
| TDGlobal of (typ * ident)
| TDFunction of (tproto * tblock)
| TDClass of tcls
type tprogram = {
prog_decls : tdeclaration list;
prog_env : env;
}
(* Quelques fonctions utiles : *)
let find_v i env =
try Smap.find i env.e_globals with Not_found -> ty_error ("No such global variable: " ^ i)
let rec bf env t =
let rec aux = function (* true si bien formé *)
| T_Int -> true
| TClass n ->
Smap.mem n env.e_classes
| TPoint t -> aux t
| _ -> false
in aux t
let num = function
| T_Int -> true
| Typenull -> true
| TPoint _ -> true
| _ -> false
(* !! modifier si on peut pas être un type num peut pas aller
avec une ref *)
let build_type_or_ref vt = (* vt -> typ,bool = tr, true si ref *)
let rec see = function
| TPtr vt -> TPoint (see vt)
| TVoid -> T_Void
| TInt -> T_Int
| TRef _ -> ty_error ("Unexpected reference type - no pionters on references allowed")
| TIdent tid -> TClass tid
in
match vt with
| TRef (TRef vt) -> ty_error ("Double references not allowed") (* ... *)
| TRef vt -> (see vt),true (* indique qu'il s'agit d'une ref *)
| vt -> (see vt),false
let rec subtype_d env a b = match a, b with (* returns distance *)
| T_Int, T_Int -> true, 0
| T_Void, T_Void -> true, 0
| Typenull, TPoint(_) -> true, 0
| TPoint(ka), TPoint(kb) -> subtype_d env ka kb
| TClass(i), TClass(j) ->
if i = j then true, 0
else begin try let c = Smap.find i env.e_classes in
begin let d = ref None in
List.iter (fun s -> match subtype_d env (TClass s) (TClass j) with
| false, _ -> ()
| true, n -> d := match !d with | None -> Some n | Some d -> Some (if d < n then d else n))
c.tc_supers;
match !d with
| Some d -> true, d+1
| None -> false, 0
end
with | Not_found -> false, 0 end
| _ -> false, 0
let subtype env a b = fst (subtype_d env a b)
(* pour la surcharge de fonctions *)
let closest_proto env arg_type_list fun_list =
let p = ref None in
List.iter (fun f ->
let proto = f in
try
let k = List.fold_left2
(fun d (t_a, t_a_ref) (t_p, t_p_ref) -> match d with
| None -> None
| Some d ->
if t_p_ref && (not t_a_ref) then None else
match subtype_d env t_a t_p with
| false, _ -> None
| true, d_a -> Some (d + d_a))
(Some 0) arg_type_list (List.map fst proto.tp_args) in
match k with
| None -> ()
| Some d -> match !p with
| None -> p := Some(d, f)
| Some(dd, _) -> if (d < dd) then p := Some(d, f)
else if (d = dd) then ty_error "Ambiguous overload"
with Invalid_argument _ -> ()) fun_list;
match !p with
| None -> None
| Some(_, f) -> Some f
(* -------------------------------------------- *)
(* On passe aux choses sérieuses *)
let rec type_expr env e = (* expression -> texpression *)
err_add_loc e.e_loc (fun () ->
let d,(ty,b1,b2) = compute_type env e in
{ te_loc = e.e_loc; te_desc = d; type_expr = (ty,b1,b2) } )
and get_expr0 env e = (* expression -> texpression,(ty,b1,b2) *)
let te = type_expr env e in
(te,te.type_expr)
and get_expr env e = (* expression -> texpression,(ty,b) *)
let te = type_expr env e in
let (ty,b,_) = te.type_expr in
(te,(ty,b))
and compute_type env e =
let e_this =
{ te_loc = e.e_loc;
te_desc = TEThis;
type_expr = TClass(match env.b_class with | Some c -> c.tc_name | None -> "#"), false, true } in
match e.e_desc with (* expression -> te_desc,(typ,ref?,left?) *)
| EInt n -> TEInt n, (T_Int,false,false)
(* false, : pas une ref, pas une val gauche*)
| EBool b -> let n = (if b then 1 else 0) in
TEInt n, (T_Int,false,false)
| ENull -> TENull, (Typenull,false,false)
| EIdent i ->
begin try
let t, r = Smap.find i env.b_locals in
TEIdent i, (t, r, true)
with Not_found ->
try match env.b_class with
| Some k -> let ty = Smap.find i k.tc_members in
TEMember(e_this, i),
(ty, false, true)
| None -> raise Not_found
with Not_found ->
try let t = Smap.find i env.b_pe.e_globals in
TEIdent i, (t, false, true)
with Not_found -> ty_error ("Undeclared identifier: " ^ i)
end
| EAssign (e1,e2) -> let te1,(ty1,r3,b3) = get_expr0 env e1 in
let te2,(ty2,_,_) = get_expr0 env e2 in
ty_assert (b3 || r3) "Can only assign to lvalue";
ty_assert (num ty1) "Cannot assign to non-numeric type (pointer type is numeric)";
ty_assert (subtype env.b_pe ty2 ty1) "Incompatible types in assign";
(* type num et ref compatibles ?*)
(TEAssign (te1,te2) ),(ty1,false,false)
| EUnary (op,e) -> let te,(ty,b1,b2) = get_expr0 env e in
(match op with
| PreIncr | PostIncr | PreDecr | PostDecr ->
ty_assert (b2 = true) "Can only increment/decrement lvalue";
ty_assert (ty = T_Int) "Can only increment/decrement integers";
TEUnary(op,te),(T_Int,b1,false)
| Plus | Minus | Not ->
ty_assert (ty = T_Int) "Can only apply unary plus/minus/not to integers";
TEUnary(op,te),(T_Int,false,false)
| Ref ->
ty_assert b2 "Can only reference lvalues";
TEUnary(op,te),(TPoint ty,false,false) (* verif *)
| Deref ->
let t = (match ty with
| TPoint t -> t
| _ -> ty_error "Can only dereference pointer" ) in
TEUnary(op,te), (t,false,true)
)
| EBinary (e1,op,e2) -> let te1,(ty1,_,b1) = get_expr0 env e1 in
let te2,(ty2,_,b2) = get_expr0 env e2 in
(match op with
| Equal | NotEqual ->
ty_assert ((subtype env.b_pe ty1 ty2) || (subtype env.b_pe ty2 ty1))
"Can only apply == or != to two values of compatible type";
ty_assert (num ty1) "Can only apply == or != to pointers"
| Lt | Le | Gt | Ge
| Add | Sub | Mul | Div | Modulo
| Land | Lor ->
ty_assert (ty1 = T_Int) "Left operand of binop is not integer";
ty_assert (ty2 = T_Int) "Right operand of binop is not integer"
); (* vérifs *)
TEBinary(te1,op,te2),(T_Int,false,false)
| ECall (e,e_list) ->
(* TODO : look also within parent classes *)
let obj, name, candidates = (match e.e_desc with
| EIdent i ->
let funs = List.filter (fun p -> p.tp_name = i) env.b_pe.e_funs in
begin match env.b_class with
| None -> None, i, funs
| Some k ->
begin match List.filter (fun p -> p.tp_name = i) k.tc_methods with
| [] -> None, i, funs
| l -> Some e_this, i, l
end
end
| EMember(e, i) ->
let e = type_expr env e in
let c = match e.type_expr with
| TClass(k), a, b when a || b ->
begin try Smap.find k env.b_pe.e_classes with
Not_found -> ty_error ("Unknown class " ^ k ^ " (should not happen)") end
| _ -> ty_error "Invalid argument type for method call (not a class, or not a lvalue)"
in
Some e, i, List.filter (fun p -> p.tp_name = i) (c.tc_methods)
| _ -> ty_error "Calling something that is neither a function nor a method") in
let args_values = List.map (get_expr0 env) e_list in
let tproto = match candidates with
| [] -> ty_error ("No such function: " ^ name)
| l ->
(* handle overload *)
let args_types = List.map (fun (e, (t, r, l)) -> t, r||l) args_values in
let f = closest_proto env.b_pe args_types candidates in
begin match f with
| None -> ty_error "No corresponding function"
| Some(p) -> p
end
in
(* vérif ici pour adresse/valeur, ici on test seulement
que ce sont les mêmes types, pas d'adressage de pris en compte *)
let l_te = List.map fst args_values in
(* que les te de e_list*)
let ty,b = match tproto.tp_ret_type with
| None -> assert false (* no return type only happens for constructors, and
constructors cannot be called as functions *)
| Some (ty,b) -> ty,b in
TECallFun(name,l_te),(ty,b,false)
| EMember _ -> ty_error "Not implemented (member)"
| ENew (cls_name, args) ->
begin try let c = Smap.find cls_name env.b_pe.e_classes in
let args_values = List.map (get_expr0 env) args in
let args_types = List.map (fun (e, (t, r, l)) -> t, r||l) args_values in
let candidates = List.filter (fun p -> p.tp_ret_type = None) c.tc_methods in
match candidates with
| [] ->
ty_assert (args = []) "Only default constructor exists and it has 0 arguments";
TENew(c, None, []), (TPoint(TClass(cls_name)), false, false)
| _ ->
let proto = closest_proto env.b_pe args_types candidates in
match proto with
| Some (p) ->
(* closest_proto makes sure the prototypes match, no problem here *)
let l_te = List.map fst args_values in
TENew(c, Some p, l_te), (TPoint(TClass(cls_name)), false, false)
| None -> ty_error "No matching prototype"
with
| Not_found -> ty_error ("No such class: " ^ cls_name)
end
| EThis -> ty_error "Not implemented (this)"
(* Statements *)
let rec type_stm ret_type env s =
err_add_loc s.s_loc (fun () ->
let d, ty = compute_type_stm ret_type env s in
{ ts_loc = s.s_loc; ts_desc = d }, ty)
and compute_type_stm ret_type env s = match s.s_desc with (* statement -> ts_desc,stm_type *)
| SEmpty -> TSEmpty,env
| SExpr e -> let te,(ty,_) = get_expr env e in (* verif ty est bien typé *)
(TSExpr te) , env
| SBlock b -> build_block ret_type env b
| SReturn None ->
let ty, ref = ret_type in
ty_assert (ty = T_Void) "Function must return non-void value";
(TSReturn None) , env
| SReturn (Some e0) -> let te,(ty,r) = get_expr env e0 in
let rty, rref = ret_type in
ty_assert (rty = ty) "Invalid return type";
ty_assert (if rref then r else true) "Function must return reference";
TSReturn (Some te), env
| SIf (e,s1,s2) -> let te,(ty,_) = get_expr env e in
let ts1,ty1 = type_stm ret_type env s1 in (* vérifs règle *)
let ts2,ty2 = type_stm ret_type env s2 in
ty_assert (ty = T_Int) "Condition in if statement must be integer";
(TSIf (te,ts1,ts2)) , env
| SFor (el1,eopt,el3,s) -> let tel1 = List.map (type_expr env) el1 in (* et fait les vérifs pr e1 et e3 ? *)
let tel3 = List.map (type_expr env) el3 in
let teopt = (match eopt with
| None -> None
| Some e -> let te,(ty,_) = get_expr env e in
ty_assert (ty = T_Int) "Condition in for statement must be integer";
Some te)
in
ignore( type_stm ret_type env s ); (* vérifie i *)
let ts, _ = type_stm ret_type env s in (* fait le truc d'avant aussi *)
TSFor (tel1,teopt,tel3,ts) , env
(* traduire règles restantes du for*)
| SWhile(e,s) -> let ts,tys = type_stm ret_type env s in
let te,(ty,_) = get_expr env e in
ty_assert (ty = T_Int) "Condition in if statement must be integer";
TSWhile(te,ts),env
(* pq while n'est pas dans les règles données ? *)
| SDeclare(vt,i) -> let ty,b = build_type_or_ref vt in
ty_assert (bf env.b_pe ty) "Malformed type";
ty_assert (not (Smap.mem i env.b_locals) ) "Variable redefinition";
let env0 =
{ b_pe = env.b_pe;
b_locals = Smap.add i (ty,b) env.b_locals;
b_class = env.b_class } in
TSDeclare( (ty,b) ,i) , env0
| SDeclareAssignExpr(vt,i,e) -> let ty,b = build_type_or_ref vt in
ty_assert (bf env.b_pe ty) "Malformed type";
ty_assert (not (Smap.mem i env.b_locals)) "Variable redefinition";
let te,(tye,r,l) = get_expr0 env e in
ty_assert (if b then r || l else true) "Can only assigne lvalue/reference to reference type var";
ty_assert (subtype env.b_pe tye ty) "Invalid data type for assign.";
let env0 =
{ b_pe = env.b_pe;
b_locals = Smap.add i (ty,b) env.b_locals;
b_class = env.b_class } in
TSDeclareAssignExpr( (ty,b) ,i,te) , env0
| SWriteCout(str_e_list) ->
let args =
List.map
(fun e -> match e.se_desc with
| SEExpr e0 -> let te,(ty,_) = get_expr env {e_loc = e.se_loc; e_desc = e0} in
ty_assert (ty = T_Int) "Expected integer or string in cout<<"; TSEExpr te
| SEStr s -> TSEStr(s) (* osef *)
)
str_e_list
in
TSWriteCout(args) , env
| SDeclareAssignConstructor(vt,i,ti,e_l) -> ty_error "TODO"
and build_block ret_type env b = (* utilisé ds compute_type_stm et def_global_fun *)
let two_stms (env,l) s =
let ts,env2 = type_stm ret_type env s in
(env2,(ts::l)) in
let ty_final,ts_list = List.fold_left two_stms (env,[]) b in
(* verif si b bien typé (règle i1;i2) et construit le te-block*)
TSBlock (List.rev ts_list),env
and get_block ret_type env b =
match fst (build_block ret_type env b) with
| TSBlock tb -> tb
| _ -> assert false
(* Déclarations de fonction *)
let parse_args env a =
let args = List.map
(fun (t, i) ->
let t, r = build_type_or_ref t in
ty_assert (bf env t) ("Malformed argument type for argument " ^ i ^ ".");
(t, r), i)
a in
let rec aux = function
| [] -> ()
| p::q -> ty_assert (not (List.mem p q)) ("Argument name appears twice : " ^ p); aux q
in aux (List.map snd args);
args
let get_fun env p b = (* p : proto b : block -> tp, tb, env2*)
assert (p.p_class = None);
let name = p.p_name in
let ty_args = parse_args env p.p_args in
(* Check there is not already a function with similar prototype *)
let args_type = List.map fst ty_args in
ty_assert (not (List.exists
(fun p -> p.tp_name = name && (List.map fst p.tp_args) = args_type) env.e_funs))
("Redefinition of function: " ^ name);
let ret_type = build_type_or_ref
(match p.p_ret_type with
| Some k -> k
| None -> ty_error "Internal error (function with no return type)" ) in
(* Add to env *)
let tproto = { tp_loc = p.p_loc ; tp_name = name ; tp_class = None ; tp_virtual = false ;
tp_ret_type = Some ret_type ; tp_args = ty_args; } in
let env2 =
{ e_globals = env.e_globals;
e_funs = tproto::(env.e_funs);
e_classes = env.e_classes; } in
(* Build local env *)
let locales = List.fold_left (* tr = (ty,ref?) *)
(fun envir (tr,i) -> Smap.add i tr envir)
Smap.empty
ty_args
in (* contexte ds l'instruction *)
let contexte = { b_pe = env2; b_locals = locales; b_class = None } in
let tb = get_block ret_type contexte b in (* vérif instructions typées*)
tproto,tb, env2
(* Déclarations de classes *)
let rec compute_tclass env c =
let name = c.c_name in
ty_assert (not (Smap.mem name env.e_classes)) ("Redeclaration of class " ^name^".");
let supers = match c.c_supers with | None -> [] | Some k -> k in
List.iter (fun n ->
ty_assert (Smap.mem n env.e_classes)
("Super " ^ n ^ " does not exist or is not a class.")) supers;
let cls_tmp = {tc_name = name; tc_supers = supers; tc_members = Smap.empty; tc_methods = [] } in
let t_env = {
e_globals = env.e_globals;
e_funs = env.e_funs;
e_classes = (Smap.add name cls_tmp env.e_classes); } in
let mem, meth = List.fold_left
(fun (mem, meth) n -> match n with
| CVar(t, i) ->
let t, r = build_type_or_ref t in
ty_assert (not r) "Class members cannot be references.";
ty_assert (bf t_env t) ("Malformed type for member " ^ i ^ ".");
ty_assert (t <> TClass(name)) "Class cannot contain itself as a member.";
ty_assert (not (Smap.mem i mem)) ("Redefinition of class member " ^ i ^ " in class " ^ name ^ ".");
(Smap.add i t mem, meth)
| CMethod(p) ->
let m = err_add_loc p.p_loc (fun () -> (build_method t_env name meth false p)) in
mem, m::meth
| CVirtualMethod(p) ->
let m = err_add_loc p.p_loc (fun () -> (build_method t_env name meth true p)) in
mem, m::meth
) (Smap.empty, []) c.c_members in
{ tc_name = name;
tc_supers = supers;
tc_members = mem;
tc_methods = meth; }
and build_method env cls_name cls_mems virt proto =
ty_assert (proto.p_class = None) "Overqualification in prototype.";
ty_assert (proto.p_ret_type <> None || proto.p_name = cls_name) "Invalid name for constructor";
(* Make sure prototype is well formed *)
let args = parse_args env proto.p_args in
(* TODO Make sure method is compatible with parents and other declarations *)
(* Check return type *)
let ret_type = match proto.p_ret_type with
| Some k -> Some (build_type_or_ref k)
| None -> None in
{ tp_virtual = virt;
tp_loc = proto.p_loc;
tp_name = proto.p_name;
tp_class = Some(cls_name);
tp_ret_type = ret_type;
tp_args = args;
}
let get_method env proto block = (* return : TDFunction *)
match proto.p_class with
| None -> assert false
| Some(cls_name) ->
try let c = Smap.find cls_name env.e_classes in
let args = parse_args env proto.p_args in
let ret_type = match proto.p_ret_type with
| Some k -> Some (build_type_or_ref k)
| None -> None in
(* Find prototype in class *)
begin try let cproto = List.find
(fun p -> p.tp_args = args && p.tp_ret_type = ret_type && p.tp_name = proto.p_name) c.tc_methods
in
let locals = List.fold_left
(fun env (tr, i) -> Smap.add i tr env) Smap.empty args in
let contexte = {
b_pe = env;
b_locals = locals;
b_class = Some c; } in
let tb = get_block (match ret_type with | None -> T_Void, false | Some k -> k) contexte block in
{ tp_virtual = cproto.tp_virtual;
tp_loc = proto.p_loc;
tp_name = proto.p_name;
tp_class = proto.p_class;
tp_ret_type = ret_type;
tp_args = args }, tb
with
| Not_found -> ty_error ("Implementation corresponds to no declared method of class " ^ cls_name)
end
with
| Not_found -> ty_error (cls_name ^ " is not defined.")
(* Partie générique *)
let compute_decl env d =
err_add_loc (d.d_loc) (fun () ->
match d.d_desc with
| DGlobal(t,i) -> let tr, r = build_type_or_ref t in
ty_assert (bf env tr) ("Malformed type for global var " ^ i);
ty_assert (not r) "Global cannot be reference";
ty_assert (not (Smap.mem i env.e_globals)) ("Redeclaration of " ^ i);
ty_assert (not (List.exists (fun p -> p.tp_name = i) env.e_funs)) ("Redeclaration of: " ^ i ^ ", was previously a function");
(TDGlobal(tr,i)) ,
{ e_globals = (Smap.add i tr env.e_globals);
e_funs = env.e_funs;
e_classes = env.e_classes }
(* on voudrait une liste de ident pr decl plsr en meme temps *)
| DFunction (p,b) ->
ty_assert (not (Smap.mem p.p_name env.e_globals)) ("Redeclaration of: " ^ p.p_name ^ ", was previously a global variable");
begin match p.p_class with
| None ->
let tp, tb, env2 = get_fun env p b in
TDFunction(tp, tb), env2
| Some _ ->
let tp, tb = get_method env p b in
(TDFunction(tp, tb)), env(* env is not modified *)
end
| DClass c ->
let tc = compute_tclass env c in
(TDClass tc),
{ e_globals = env.e_globals;
e_funs = env.e_funs;
e_classes = Smap.add c.c_name tc env.e_classes; }
)
let prog p =
let decls, env = (
List.fold_left
(fun (decls, env) decl ->
let decl_p, env2 = compute_decl env decl in
decl_p::decls, env2)
([],{ e_globals = Smap.empty; e_funs = []; e_classes = Smap.empty })
p
) in
{ prog_decls = decls; prog_env = env }