open Mips
open Typing
exception Very_bad_error of string
exception Reference_register of register
(* Convention pour les registres :
- a0, a1, a2, a3 : contiennent les (éventuels) 4 premiers arguments de la fonction
- v0 : contient la valeur de retour des fonctions (rien de particulier pour un constructeur)
- v0-v1, t0-t9, s0-s1 : utilisés pour les calculs
- fp contient un pointeur de frame mis à jour pour chaque appel
de fonction
- sp n'est pas tenu à jour en fonction de l'état de la pile, par contre il est
utilisé lors d'un appel de fonction pour pouvoir définir le nouvea fp,
il est donc mis à jour avant chaque appel de fonction pour effectivement refléter
l'état d'utilisation de la pile (pile sur laquelle il peut d'ailleurs y avoir
des arguments excedentaires)
Tous les registres doivent être sauvés par l'appellant sauf fp
Les registres a0, a1, a2, a3 sont susceptibles d'être modifiés par la fonction appellée.
**sauf dans le cas où a0 représente this** !!
*)
(* Environnement pour accéder aux variables *)
type whereis_var =
| VGlobal
| VStack of int (* position relative à $fp *)
| VStackByRef of int
| VRegister of register
| VRegisterByRef of register
type cg_env = {
c_penv : env; (* environnement de programme, contient des informations sur les types *)
c_names : whereis_var Smap.t; (* où trouver les variables locales et globales *)
c_ret_ref : bool; (* la fonction renvoie-t-elle son résultat par référence ? *)
c_ret_lbl : string; (* où jump lors d'un return (code de nettoyage, etc.) *)
c_fp_used : int; (* combien de place sur la pile est utilisé *)
c_need_fp : bool ref; (* a-t-on besoin de la pile ? mis à true à la première occasion.
si false, on se dispense d'initialiser $fp *)
c_save_regs : register list; (* liste de registres à préserver *)
c_free_regs : register list; (* liste de registres disponnibles pour les calculs *)
}
let env_push n e = (* occuper n octets de plus sur la pile, renvoyer l'environnemnet adapté *)
if n <> 0 then e.c_need_fp := true;
let kk = e.c_fp_used + n in
{ e with c_fp_used = kk }, -kk
let env_add_var vid vv e =
{ e with c_names = Smap.add vid vv e.c_names }
let env_get_free_reg e = (* prend un registre libre, le passe dans la liste des registres à conserver *)
let r, more = List.hd e.c_free_regs, List.tl e.c_free_regs in
{ e with
c_free_regs = more;
c_save_regs = r::e.c_save_regs }, r
let globals_env = ref Smap.empty
(* Chaînes de caractères utilisées dans le programme *)
let strings = Hashtbl.create 12 (* string -> label *)
(* Identifiants uniques pour divers objets - essentiellement labels *)
let id =
let last = ref 0 in
fun prefix -> (last := !last + 1; prefix ^ (string_of_int !last))
(* Doit-on se préparer à faire des appels de fonction ? Ie sauvegarder $ra,
et éventuellement d'autres registres *)
let rec expr_does_call e = match e.te_desc with
| TEInt _ | TENull | TEThis | TEIdent _ -> false
| TEAssign(a, b) -> expr_does_call a || expr_does_call b
| TECallFun (_, _, _) -> true
| TECallVirtual (_, _, _, _) -> true
| TEUnary (_, e) -> expr_does_call e
| TEBinary (a, _, b) -> expr_does_call a || expr_does_call b
| TEMember (e, _) -> expr_does_call e
| TEPointerCast(e, _) -> expr_does_call e
| TENew(_, _, _) -> true
let rec stmt_does_call = function
| TSEmpty | TSReturn(None) -> false
| TSExpr(e) -> expr_does_call e
| TSIf (e, sa, sb) -> expr_does_call e || stmt_does_call sa || stmt_does_call sb
| TSWhile(e, s) -> expr_does_call e || stmt_does_call s
| TSFor(e, f, g, s) -> (List.exists expr_does_call e) || (match f with | None -> false | Some k -> expr_does_call k)
|| (List.exists expr_does_call g) || stmt_does_call s
| TSBlock(k) -> List.exists stmt_does_call k
| TSReturn(Some k) -> expr_does_call k
| TSDeclare(TClass _, _) -> true
| TSDeclare (_, _) -> false
| TSDeclareAssignExpr(_, _, e) -> expr_does_call e
| TSDeclareAssignConstructor(_, _, _, _) -> true
| TSWriteCout(l) -> List.exists (function | TSEExpr e -> expr_does_call e | TSEStr _ -> false) l
(* La génération de code, enfin ! *)
(* Arguments de la fonction gen_expr :
- un environnement : permet de savoir plein de choses, par exemple combien de place est
utilisée sur la pile en-dessous de $fp
- une liste de registres disponnibles pour faire le calcul
*qui doit toujours contenir au moins un registre*
- une liste de registres à sauvegarder dans tous les cas
- l'expression pour laquelle on veut générer du code
À l'issue d'un appel à gen_expr, il y a plusieurs possibilités, exprimées
par le type union expr_type décrit ci-dessus :
- le premier registre de la liste des registres disponnibles (noté r) contient
une adresse qui est l'adresse de la valeur dénotée par l'expression
- la valeur dénotée est stockée dans x(reg) pour un certain reg et un certain x
- la valeur est stockée dans un certain registre a, qui est son
"registre de référence", ie si on doit affecter à cette valeur on peut
modifier ce registre
- la valeur est stockée dans le registre r
Dans tous les cas sauf le dernier, on peut modifier la valeur dénotée par
l'expression (par exemple lors d'une affectation).
Si le typage nous garantit que l'expression ne peut pas être affectée, on peut
utiliser l'artifice de dire qu'une valeur est placée dans un registre comme
"registre de référence" même lorsque ce n'est pas le cas (= jouer avec le feu).
*)
(* possibilités pour ce qui est généré par gen_expr *)
type expr_type =
| Addr (* top register contains address of value *)
| AddrByReg of int * register (* value at int(register) *)
| Value of register (* other register is home to the value *)
| Copy (* top register contains copy of value *)
(* on a fait un appel à gen_expr, maintenant on veut être sûr d'avoir
soit l'adresse soit la valeur dans tel ou tel registre *)
let cla r a = match a with
| Addr -> nop
| AddrByReg(x, rg) -> la r areg (x, rg)
| Value r -> raise (Reference_register r)
| _ -> assert false
let cr r a = match a with (* conditionnally read *)
| Addr -> lw r areg (0, r)
| AddrByReg(x, rg) -> lw r areg (x, rg)
| Copy -> nop
| Value k -> if r <> k then move r k else nop
let crb r q a = match a with
| Value k -> q, k
| _ -> q ++ cr r a, r
let spare_reg = s0
let spare_reg2 = s1
(* Cette fonction prévoit de l'espace sur la pile pour enregistrer les
valeurs de tous les registres save_regs à sauvegarder (elle donne un nouvel
environnement où la place nécessaire est réservée) et génère le code
nécessaire à la sauvegarde et à la restauration.
Le nouvel environnement est également modifié de manière à ce que de futurs
appels à des valeurs qui devaient être enregistrées dans des registres sauvegardés
soient maintenant faits en prenant en compte la relocalisation de ces valeurs
sur la pile. *)
let saver env save_regs =
List.fold_left
(fun (code, more_code, env) r ->
let new_fp_used = env.c_fp_used + 4 in
let pos = - new_fp_used in
env.c_need_fp := true;
code ++ sw r areg (pos, fp), lw r areg (pos, fp) ++ more_code,
{ env with
c_names = Smap.map
(function
| VRegister k when k = r -> VStack (pos)
| VRegisterByRef k when k = r -> VStackByRef(pos)
| a -> a) env.c_names;
c_fp_used = new_fp_used;
c_save_regs = (List.filter ((<>) r) env.c_save_regs) }
)
(nop, nop, env) save_regs
(*
renvoie le résultat dans le premier registre de free_regs
ou autre (cf ci-dessus)
*)
let rec gen_expr env free_regs save_regs e =
(* register management *)
let r = List.hd free_regs in (* register where to put result *)
let more = List.tl free_regs in
(* generate the code... *)
match e.te_desc with
| TEInt(k) -> li r k, Copy
| TENull -> nop, Value zero
| TEThis -> (* convention : this is always the first argument, so in a0 *)
begin match Smap.find "this" env.c_names with
| VRegister(k) when k <> r -> nop, Value k
| VStack(i) -> nop, AddrByReg(i, fp)
| _ -> assert false
end
| TEIdent(i) ->
begin match Smap.find i env.c_names with
| VGlobal -> la r alab i, Addr
| VStack(i) -> nop, AddrByReg(i, fp)
| VStackByRef(i) -> lw r areg (i, fp), Addr
| VRegister(k) -> nop, Value k
| VRegisterByRef(k) -> nop, AddrByReg(0, k)
end
| TEAssign(e1, e2) ->
begin match more with
| [] -> (* cas où l'on a pas assez de registres disponnibles : on doit utiliser la pile *)
let t1, ae1 = gen_expr env free_regs save_regs e1 in
let env2, tspot = env_push 4 env in
let t2, ae2 = gen_expr env2 free_regs save_regs e2 in
let t2 = t2 ++ cr r ae2 in
begin match ae1 with
| Addr -> t1 ++ sw r areg (tspot, fp) ++ t2 ++ lw spare_reg areg (tspot, fp) ++ sw r areg (0, spare_reg), Copy
| AddrByReg (x, rg) when t1 = nop -> t2 ++ sw r areg (x, rg), Copy
| Value k when t1 = nop && k <> r -> t2 ++ move k r, Copy
| _ -> assert false
end
| b::_ ->
let t1, ae1 = gen_expr env more (r::save_regs) e1 in
let t2, ae2 = gen_expr env free_regs save_regs e2 in
let t2, r2 = crb r t2 ae2 in
let tr = if r2 = r then Copy else Value r2 in
begin match ae1 with
| Addr -> t2 ++ t1 ++ sw r2 areg (0, b), tr
| AddrByReg (x, rg) when t1 = nop -> t2 ++ sw r2 areg (x, rg), tr
| Value k when t1 = nop && k <> r2 -> t2 ++ move k r2, tr
| _ -> assert false
end
end
| TECallFun(id, args, b) ->
let keep_result_in_v0 = (not (List.mem v0 save_regs)) || r = v0 in
let code_save_regs, code_restore_regs, env_regs_saved = saver env save_regs in
let args_code, _, env_args = code_for_args env_regs_saved args [ a0; a1; a2; a3 ] in
code_save_regs
++ args_code
++ la sp areg (-env_args.c_fp_used, fp) ++ jal id
++ (if keep_result_in_v0 then nop else move r v0)
++ code_restore_regs,
if b
then (if keep_result_in_v0 then AddrByReg (0, v0) else Addr)
else (if keep_result_in_v0 then Value(v0) else Copy)
| TECallVirtual(obj, fi, args, b) ->
let keep_result_in_v0 = (not (List.mem v0 save_regs)) || r = v0 in
let code_save_regs, code_restore_regs, env_regs_saved = saver env save_regs in
let args_code, sr, env_args = code_for_args env_regs_saved ((obj, true)::args) [ a0; a1; a2; a3 ] in
code_save_regs
++ args_code
++ lw v0 areg (0, a0) ++ lw v0 areg (fi, v0)
++ la sp areg (-env_args.c_fp_used, fp) ++ jalr v0
++ (if keep_result_in_v0 then nop else move r v0)
++ code_restore_regs,
if b
then (if keep_result_in_v0 then AddrByReg (0, v0) else Addr)
else (if keep_result_in_v0 then Value(v0) else Copy)
| TEUnary (x, e) ->
let t, a = gen_expr env free_regs save_regs e in
begin match x with
| Ast.Deref ->
begin match a with
| Value r -> t, AddrByReg (0, r)
| _ -> t ++ cr r a, Addr
end
| Ast.Ref ->
t ++ cla r a, Copy
| Ast.Plus -> t ++ cr r a, Copy
| Ast.Minus -> t ++ cr r a ++ neg r r, Copy
| Ast.Not -> t ++ cr r a ++ not_ r r, Copy
| Ast.PreIncr | Ast.PreDecr ->
let delta = if x = Ast.PreIncr then 1 else -1 in
begin match a with
| Addr ->
t ++ move spare_reg r ++ lw r areg (0, spare_reg)
++ add r r oi delta ++ sw r areg (0, spare_reg), Copy
| AddrByReg (k, rg) when t = nop && r <> rg ->
lw r areg (k, rg)
++ add r r oi delta ++ sw r areg (k, rg), Copy
| Value v when t = nop && v <> r ->
add v v oi delta ++ move r v, Copy
| _ -> assert false
end
| Ast.PostIncr | Ast.PostDecr ->
let delta = if x = Ast.PostIncr then 1 else -1 in
begin match a with
| Addr ->
t ++ move spare_reg r
++ lw r areg(0, spare_reg)
++ add spare_reg2 r oi delta
++ sw spare_reg2 areg(0, spare_reg), Copy
| AddrByReg (k, rg) when t = nop && r <> rg ->
lw r areg (k, rg)
++ add spare_reg r oi delta
++ sw spare_reg areg (k, rg), Copy
| Value v when t = nop && v <> r ->
move r v ++ add v v oi delta, Copy
| _ -> assert false
end
end
| TEBinary(e1, op, e2) when op <> Ast.Lor && op <> Ast.Land ->
let rs, rb, precode = match more with
| [] -> (* plus de registres disponnibles, utiliser la pile *)
let env2, tspot = env_push 4 env in
let t1, ae1 = gen_expr env2 free_regs save_regs e1 in
let t2, ae2 = gen_expr env free_regs save_regs e2 in
let t1, r1 = crb r t1 ae1 in
let t2, r2 = crb r t2 ae2 in
r1, spare_reg, t2 ++ sw r2 areg (tspot, fp) ++ t1 ++ lw spare_reg areg (tspot, fp)
| b::_ ->
let t1, ae1 = gen_expr env free_regs save_regs e1 in
let t2, ae2 = gen_expr env more (r::save_regs) e2 in
let t1, rs = crb r t1 ae1 in
let t2, rb = crb b t2 ae2 in
rs, rb, t1 ++ t2
in
precode ++ (match op with
| Ast.Add -> add r rs oreg rb
| Ast.Sub -> sub r rs oreg rb
| Ast.Mul -> mul r rs oreg rb
| Ast.Div -> div r rs oreg rb
| Ast.Modulo -> rem r rs oreg rb
| Ast.Equal -> seq r rs rb
| Ast.NotEqual -> sne r rs rb
| Ast.Lt -> slt r rs rb
| Ast.Le -> sle r rs rb
| Ast.Gt -> sgt r rs rb
| Ast.Ge -> sge r rs rb
| _ -> assert false
), Copy
| TEBinary(e1, op, e2) (* when op = Ast.Lor || op = Ast.Land *) ->
let t1, ae1 = gen_expr env free_regs save_regs e1 in
let t2, ae2 = gen_expr env free_regs save_regs e2 in
let t1 = t1 ++ cr r ae1 in
let t2 = t2 ++ cr r ae2 in
let lazy_lbl = id "_lazy" in
t1 ++ (if op = Ast.Lor then bnez r lazy_lbl else beqz r lazy_lbl)
++ t2 ++ label lazy_lbl ++ sne r r zero, Copy
| TEMember(e, i) ->
let c, a = gen_expr env free_regs save_regs e in
if i <> 0 then begin
match a with
| Addr -> c ++ la r areg (i, r), Addr
| AddrByReg (k, rg) when c = nop -> nop, AddrByReg (k + i, rg)
| _ -> assert false
end else
c, a
| TEPointerCast(e, i) ->
let c, a = gen_expr env free_regs save_regs e in
c ++ cr r a ++ (if i = 0 then nop else la r areg (i, r)), Copy
| TENew(cls, constr, args) ->
let code_save_regs, code_restore_regs, env_regs_saved = saver env save_regs in
let args_code, _, env_args = code_for_args env_regs_saved args [ a1; a2; a3 ] in
code_save_regs ++ args_code
++ li v0 9 ++ li a0 cls.tc_size ++ syscall ++ move a0 v0
++ la sp areg (-env_args.c_fp_used, fp) ++ jal constr
++ (if r <> a0 then move r a0 else nop) ++ code_restore_regs, Copy
and code_for_args env arg_list regs =
(* assigne registers to possibly in-register arguments *)
let args_in_regs, args_in_stack, _ = List.fold_left
(fun (ir, is, fr) (arg, byref) ->
match fr with
| [] -> ir, (arg, byref)::is, []
| r::nfr -> (r, (arg, byref))::ir, is, nfr)
([], [], regs) arg_list in
(* allocate stack for remaining args *)
let stack_use = 4 * List.length args_in_stack in
let kenv, _ = env_push stack_use env in
(* make code for in-stack arguments *)
let args_in_stack = List.rev args_in_stack in
let code_for_stack, _ = List.fold_left
(fun (code, u) (arg, byref) ->
let c, addr = gen_expr kenv (v0::kenv.c_free_regs) [] arg in
(if byref then
c ++ cla v0 addr ++ sw v0 areg (-kenv.c_fp_used + u, fp) ++ code, u+4
else
let c, freg = crb v0 c addr in
c ++ sw freg areg (-kenv.c_fp_used + u, fp) ++ code, u+4
)
) (nop, 0) args_in_stack in
(* make code for in-register arguments *)
let arg_reg_do_call, arg_reg_dont_call =
List.partition (fun (_, (e, _)) -> expr_does_call e) args_in_regs in
let rec mk_code_callz e = function
| [] -> nop
| (reg, (expr, byref))::more_args ->
let c, addr = gen_expr e (reg::kenv.c_free_regs) [] expr in
if more_args = [] then
c ++ (if byref then cla reg addr else cr reg addr)
else
let e2, pos = env_push 4 e in
(if byref then
c ++ cla reg addr ++ sw reg areg (pos, fp)
else
let tt, r2 = crb reg c addr in
tt ++ sw r2 areg (pos, fp))
++ (mk_code_callz e2 more_args) ++ lw reg areg (pos, fp)
in
let code_reg_do_call = mk_code_callz kenv arg_reg_do_call in
let code_reg_dont_call, _ =
List.fold_left
(fun (code, ur) (reg, (expr, byref)) ->
let c, addr = gen_expr kenv (reg::kenv.c_free_regs) ur expr in
code ++ c ++ (if byref then cla reg addr else cr reg addr), reg::ur)
(nop, []) arg_reg_dont_call
in
let code = code_for_stack ++ code_reg_do_call ++ code_reg_dont_call
in code, (List.map fst args_in_regs), kenv
(* On peut maintenant calculer une expression préferentiellement dans tel ou tel registre *)
let gen_expr_dr dr env = gen_expr env (dr::env.c_free_regs) env.c_save_regs
let gen_expr_v0 = gen_expr_dr v0
let rec gen_stmt alloc_vars_in_regs env = function
| TSEmpty -> nop, env
| TSExpr(e) ->
comment "expr" ++ (fst (gen_expr_v0 env e)), env
| TSIf(cond, s1, s2) ->
let c, a = gen_expr_v0 env cond in
let c, reg = crb v0 c a in
let l_else = id "_cond_else" in
let l_end = id "_cond_end" in
let c_then = gen_block env [s1] in
let c_else = gen_block env [s2] in
comment "if"
++ c ++ beqz reg l_else
++ c_then ++ b l_end
++ label l_else ++ c_else
++ label l_end, env
| TSWhile(cond, body) ->
let c, a = gen_expr_v0 env cond in
let c, reg = crb v0 c a in
let l_begin = id "_while_begin" in
let l_cond = id "_while_cond" in
let c_body = gen_block env [body] in
comment "while" ++ b l_cond
++ label l_begin ++ c_body
++ label l_cond ++ c ++ bnez reg l_begin, env
| TSFor(before, cond, after, body) ->
let l_begin = id "_for_begin" in
let l_cond = id "_for_cond" in
let c_before = List.fold_left
(fun code expr -> let c, _ = gen_expr_v0 env expr in code ++ c) nop before in
let c_after = List.fold_left
(fun code expr -> let c, _ = gen_expr_v0 env expr in code ++ c) nop after in
let c_cond = match cond with
| None -> b l_begin
| Some x ->
let c, a = gen_expr_v0 env x in
let c, reg = crb v0 c a in
c ++ bnez reg l_begin in
let c_body = gen_block env [body] in
comment "for"
++ c_before ++ b l_cond
++ label l_begin ++ c_body ++ c_after
++ label l_cond ++ c_cond, env
| TSBlock(b) ->
let c = gen_block env b in
comment "block" ++ c, env
| TSReturn (None) ->
comment "return" ++ b env.c_ret_lbl, env
| TSReturn (Some e) ->
let c, a = gen_expr_v0 env e in
comment "return"
++ c ++ (if env.c_ret_ref then cla v0 a else cr v0 a)
++ b env.c_ret_lbl, env
| TSDeclare (ty, id) ->
if num ty && alloc_vars_in_regs && List.length env.c_free_regs > 5 then
(* allocate variable in register *)
let env2, reg = env_get_free_reg env in
comment ("declare " ^ id) ++ move reg zero,
env_add_var id (VRegister reg) env2
else
let s = type_size env.c_penv ty in
let env2, pos = env_push s env in
let code = match ty with
| TClass(i) ->
let c = get_c env.c_penv i in
let cproto = List.find
(fun p -> p.tp_ret_type = None && p.tp_name = i && p.tp_args = []) c.tc_methods in
let code_save_regs, code_restore_regs, env_regs_saved = saver env2 env.c_save_regs in
code_save_regs
++ la a0 areg (pos, fp)
++ la sp areg (-env_regs_saved.c_fp_used, fp) ++ jal cproto.tp_unique_ident
++ code_restore_regs
| _ -> sw zero areg (pos, fp)
in
comment ("declare " ^ id) ++ code,
env_add_var id (VStack pos) env2
| TSDeclareAssignConstructor(cls, id, constr, args) ->
let env2, pos = env_push cls.tc_size env in
let code =
let code_save_regs, code_restore_regs, env_regs_saved = saver env2 env.c_save_regs in
let args_code, _, env_args = code_for_args env_regs_saved args [ a1; a2; a3 ] in
code_save_regs
++ args_code ++ la a0 areg(pos, fp)
++ la sp areg (-env_args.c_fp_used, fp) ++ jal constr
++ code_restore_regs
in
comment ("declare " ^ id) ++ code,
env_add_var id (VStack pos) env2
| TSDeclareAssignExpr ((ty, ref), id, e) ->
assert (ref || num ty);
if alloc_vars_in_regs && List.length env.c_free_regs > 5 then
(* allocate variable in register *)
let env2, reg = env_get_free_reg env in
let code, a = gen_expr env (reg::env2.c_free_regs) env.c_save_regs e in
comment ("declare " ^ id)
++ code ++ (if ref then cla reg a else cr reg a),
env_add_var id (if ref then VRegisterByRef reg else VRegister reg) env2
else
let code, a = gen_expr_v0 env e in
let env2, pos = env_push 4 env in
comment ("declare " ^ id)
++ (if ref then
code ++ cla v0 a ++ sw v0 areg (pos, fp)
else
let k, b = crb v0 code a in
k ++ sw b areg (pos, fp)
),
env_add_var id (if ref then VStackByRef pos else VStack pos) env2
| TSWriteCout(sl) ->
let save_code, restore_code, env2 = saver env
(if List.mem a0 env.c_save_regs then [a0] else []) in
let text1 = List.fold_left
(fun text -> function
| TSEExpr(e) ->
let t, a = gen_expr_dr a0 env2 e in
text ++ t ++ cr a0 a ++ li v0 1 ++ syscall
| TSEStr(s) ->
let l =
if Hashtbl.mem strings s then
Hashtbl.find strings s
else
let l = id "_s" in Hashtbl.add strings s l;
l
in
text ++ la a0 alab l ++ li v0 4 ++ syscall)
nop sl in
comment "cout<<..."
++ save_code ++ text1 ++ restore_code, env
and gen_block env b =
let rec fold env = function
| [] -> nop
| stmt::next ->
let does_call_after = List.exists stmt_does_call next in
try
let tt, ee = gen_stmt (not does_call_after) env stmt in
let more_code = fold ee next in
tt ++ more_code
with Reference_register _ ->
let tt, ee = gen_stmt false env stmt in
let more_code = fold ee next in
tt ++ more_code
in
fold env b
let gen_decl tenv decl = match decl with
| TDGlobal(ty, id) ->
globals_env := Smap.add id VGlobal !globals_env;
let bytes = type_size tenv ty in
nop, (label id) ++ (dword (let rec a n = if n > 0 then 0::(a (n-4)) else [] in a bytes))
| TDFunction(proto, block) ->
let regs_for_args, env0 = match proto.tp_class with
| None -> [ a0; a1; a2; a3 ], !globals_env
| Some k -> [ a1; a2; a3 ], Smap.add "this" (VRegister a0) !globals_env
in
let need_fp = ref false in
let names, _, free_regs = List.fold_left
(fun (env, p, regs) ((ty, r), id) ->
assert (r || type_size tenv ty = 4);
match regs with
| reg::more_regs ->
Smap.add id (if r then VRegisterByRef reg else VRegister reg) env, p, more_regs
| [] -> need_fp := true;
Smap.add id (if r then VStackByRef p else VStack p) env, p + 4, regs
)
(env0, 0, regs_for_args) proto.tp_args in
let env = {
c_penv = tenv;
c_names = names;
c_ret_ref = (match proto.tp_ret_type with | None -> false | Some(_, r) -> r);
c_ret_lbl = "_return_" ^ proto.tp_unique_ident;
c_fp_used = 8;
c_need_fp = need_fp;
c_free_regs = [ t0; t1; t2; t3; t4; t5; t6; t7; t8; t9; v1 ];
c_save_regs = List.filter (fun r -> not (List.mem r free_regs)) [a0; a1; a2; a3];
} in
let code_for_constructor, does_calls = match proto.tp_ret_type with
| Some _ -> nop, (List.exists stmt_does_call block)
| None -> let cls_name = (match proto.tp_class with | Some k -> k | None -> assert false) in
la sp areg (-8, fp) ++ jal (cls_name ^ "0"), true
in
let code_for_virtual = match proto.tp_virtual with
| Some (c, _) when c.h_pos <> 0 ->
la a0 areg (-c.h_pos, a0)
| _ -> nop
in
if does_calls
then
let save_code, unsave_code, env2 =
saver env (List.filter (fun x -> x <> a0 || proto.tp_class = None) env.c_save_regs)
in
let text = gen_block env2 block in
label proto.tp_unique_ident
++ sw fp areg (-4, sp) ++ sw ra areg (-8, sp) ++ move fp sp
++ code_for_virtual ++ save_code ++ code_for_constructor ++ text
++ label env.c_ret_lbl ++ move sp fp ++ lw fp areg (-4, sp) ++ lw ra areg (-8, sp)
++ jr ra, nop
else
let rec bb_fp e =
try
gen_block e block
with Reference_register r ->
let save_code, _, env2 = saver env [r] in
save_code ++ bb_fp env2
in
let text = bb_fp env in
label proto.tp_unique_ident
++ (if !need_fp then sw fp areg (-4, sp) ++ move fp sp else nop)
++ code_for_virtual ++ text
++ label env.c_ret_lbl ++ (if !need_fp then move sp fp ++ lw fp areg (-4, sp) else nop)
++ jr ra, nop
| TDClass(c) ->
let constructor_calls_something = ref false in
(* Call default constructor of parent classes *)
let code_parents = List.fold_left
(fun code parent ->
let cn = parent.h_class in
let c = get_c tenv cn in
let proto = List.find
(fun p -> p.tp_ret_type = None && p.tp_args = [] && p.tp_name = cn)
c.tc_methods in
constructor_calls_something := true;
code ++ (if parent.h_pos <> 0 then la a0 areg(parent.h_pos, a0) else nop)
++ jal proto.tp_unique_ident ++ (if parent.h_pos <> 0 then lw a0 areg (-12, fp) else nop))
nop c.tc_hier.h_supers in
(* Build vtables and build constructor *)
let rec make_vtables hh =
(* calculate vtable contents *)
let vtable_size = List.fold_left (fun k (p, _) -> max k (p+4)) 0 hh.h_vtable in
let vtable_as_array = Array.make (vtable_size / 4) "_nothing" in
List.iter (fun (p, s) -> vtable_as_array.(p/4) <- s.tp_unique_ident) hh.h_vtable;
let vt_l = Array.to_list vtable_as_array in
(* code for vtable initialization *)
let vtable =
if vt_l = []
then nop
else label ("_vt_" ^ c.tc_name ^ "_as_" ^ hh.h_class) ++ address vt_l in
let constructor_code =
if vt_l = []
then nop
else la a1 alab ("_vt_" ^ c.tc_name ^ "_as_" ^ hh.h_class)
++ sw a1 areg (hh.h_pos, a0) in
(* code for subclasses vtable initialization *)
List.fold_left
(fun (vt, cc) sup ->
let mvt, mcc = make_vtables sup in
vt ++ mvt, cc ++ mcc)
(vtable, constructor_code) hh.h_supers
in
let vtables, vtable_init_code = make_vtables c.tc_hier in
(* Initialize members *)
let init_code_proper = Smap.fold
(fun _ (ty, pos) code ->
code ++ (match ty with
| TClass(s) ->
let cs = get_c tenv s in
let proto = List.find
(fun p -> p.tp_ret_type = None && p.tp_args = [] && p.tp_name = s)
cs.tc_methods in
constructor_calls_something := true;
(if pos <> 0 then la a0 areg (pos, a0) else nop)
++ la sp areg (-12, fp)
++ jal proto.tp_unique_ident
++ (if pos <> 0 then lw a0 areg (-12, fp) else nop)
| _ -> sw zero areg (pos, a0)))
c.tc_members nop
in (* Put it all together *)
label (c.tc_name ^ "0")
++ (if !constructor_calls_something then
sw fp areg (-4, sp) ++ move fp sp ++ sw ra areg (-8, fp)
++ sw a0 areg (-12, fp) ++ la sp areg (-12, fp)
else nop)
++ code_parents ++ vtable_init_code ++ init_code_proper
++ (if !constructor_calls_something then
lw ra areg (-8, fp) ++ move sp fp ++ lw fp areg (-4, sp)
else nop)
++ jr ra, vtables
let generate p =
try
let text, data = List.fold_left (fun (text, data) decl ->
let more_text, more_data = gen_decl p.prog_env decl in
text ++ more_text, data ++ more_data) (nop, nop) p.prog_decls in
let text =
label "main"
++ jal p.prog_main
++ li v0 10 ++ syscall
++ label "_nothing" ++ jr ra
++ text in
let str = Hashtbl.fold
(fun str lbl data -> data ++ label lbl ++ asciiz str)
strings nop in
{ text = text;
data = data ++ str }
with
| Assert_failure (k, a, b) -> raise (Very_bad_error (
"(unexpected) Assertion failure: "^k^" at "^(string_of_int a)^":"^(string_of_int b)))
| Not_found -> raise (Very_bad_error ("(unexpected) Not found"))
| Invalid_argument(k) -> raise (Very_bad_error ("(unexpected) Invalid argument: "^k))
| Match_failure(k, a, b) -> raise (Very_bad_error (
"(unexpected) Match failure: "^k^" at "^(string_of_int a)^":"^(string_of_int b)))
| Stack_overflow -> raise (Very_bad_error ("(unexpected) Stack overflow"))
| _ -> raise (Very_bad_error ("(unexpected) Other error"))