/*
Projet d'algorithmique et programmation 2013-2014
(cours de C.Matthieu et J.Stern)
Alex AUVOLAT, Mendes OULAMARA
Sujet : Algorithme de Bron-Kerbosch pour Maximum-Clique
(cf maxclique.pdf)
*/
#include <stdlib.h>
#include "sets.h"
#include "graph.h"
#include "algos.h"
/*
max_clique calculates the maximum clique in a graph. Arguments :
- g : the graph where the clique is looked for
- k : the clique we are currently examining
- c : the graph nodes we can potentially add to the clique
- a : the nodes we can actually add to the clique
- mc : a pointer to the set containing the maximum clique found until now
Returns nothing (result is in *mc).
*/
// Driver
void usage(char *pname) {
printf("\nUsage:\n\t%s [options] [<graph file>]\n\n", pname);
printf("Available options:\n");
printf("\n -d\n\tRead input in DIMACS format\n");
printf("\n -b\n\tUse algorithm B\n");
printf("\n -c\n\tUse algorithm C\n");
printf("\n -o <file.dot>\n\tDump graph in graphwiz .dot format\n");
printf("\n -h, --help\n\tShow this help page\n");
exit(1);
}
int main(int argc, char **argv) {
int i;
int dimacs = 0;
char *filename = "-";
char *dump = NULL;
int algo = 0;
for (i = 1; i < argc; i++) {
if (!strcmp(argv[i], "-d")) {
dimacs = 1;
} else if (!strcmp(argv[i], "-o")) {
if (++i == argc) usage(argv[0]);
dump = argv[i];
} else if (!strcmp(argv[i], "-b")) {
algo = 1;
} else if (!strcmp(argv[i], "-c")) {
algo = 2;
} else if (argv[i][0] == '-') {
usage(argv[0]);
} else {
filename = argv[i];
}
}
FILE *f = stdin;
if (strcmp(filename, "-")) {
f = fopen(filename, "r");
if (f == NULL) {
fprintf(stderr, "Error: could not open file %s\n", filename);
return 1;
}
}
graph g = (dimacs ? load_graph_dimacs(f) : load_graph(f));
if (g == NULL) {
fprintf(stderr, "Error loading file %s\n", filename);
return 1;
}
fclose(f);
if (dump != NULL) {
f = fopen(dump, "w");
if (f == NULL) {
fprintf(stderr, "Error: could not open file %s for writing\n", dump);
return 1;
}
dump_graphviz(g, f);
fclose(f);
}
// do stuff with graph
if (algo == 0) {
set max_clique = empty_set(g->N);
set init_s = full_set(g->N);
set init_k = empty_set(g->N);
max_clique_a(g, init_k, init_s, &max_clique);
printf("Max clique: "); dump_set(max_clique);
} else if (algo == 1) {
set max_clique = empty_set(g->N);
set init_c = full_set(g->N);
set init_a = full_set(g->N);
set init_k = empty_set(g->N);
max_clique_b(g, init_k, init_c, init_a, &max_clique);
printf("Max clique: "); dump_set(max_clique);
} else if (algo == 2) {
set max_clique = empty_set(g->N);
set init_c = full_set(g->N);
set init_a = full_set(g->N);
set init_k = empty_set(g->N);
max_clique_c(g, init_k, init_c, init_a, &max_clique);
printf("Max clique: "); dump_set(max_clique);
}
delete_graph(g);
return 0;
}