aboutsummaryrefslogtreecommitdiff
path: root/static/presentations/2021-11-13/garage/examples/math.html
blob: bd2e75a6dfb40cfcdd483203df084400b9b3e680 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
<!doctype html>
<html lang="en">

	<head>
		<meta charset="utf-8">

		<title>reveal.js - Math Plugin</title>

		<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no">

		<link rel="stylesheet" href="../dist/reveal.css">
		<link rel="stylesheet" href="../dist/theme/night.css" id="theme">
	</head>

	<body>

		<div class="reveal">

			<div class="slides">

				<section>
					<h2>reveal.js Math Plugin</h2>
					<p>Render math with KaTeX, MathJax 2 or MathJax 3</p>
				</section>

				<section>
					<h3>The Lorenz Equations</h3>

					\[\begin{aligned}
					\dot{x} &amp; = \sigma(y-x) \\
					\dot{y} &amp; = \rho x - y - xz \\
					\dot{z} &amp; = -\beta z + xy
					\end{aligned} \]
				</section>

				<section>
					<h3>The Cauchy-Schwarz Inequality</h3>

					<script type="math/tex; mode=display">
						\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
					</script>
				</section>

				<section>
					<h3>A Cross Product Formula</h3>

					\[\mathbf{V}_1 \times \mathbf{V}_2 =  \begin{vmatrix}
					\mathbf{i} &amp; \mathbf{j} &amp; \mathbf{k} \\
					\frac{\partial X}{\partial u} &amp;  \frac{\partial Y}{\partial u} &amp; 0 \\
					\frac{\partial X}{\partial v} &amp;  \frac{\partial Y}{\partial v} &amp; 0
					\end{vmatrix}  \]
				</section>

				<section>
					<h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3>

					\[P(E)   = {n \choose k} p^k (1-p)^{ n-k} \]
				</section>

				<section>
					<h3>An Identity of Ramanujan</h3>

					\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
					1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
					{1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
				</section>

				<section>
					<h3>A Rogers-Ramanujan Identity</h3>

					\[  1 +  \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
					\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
				</section>

				<section>
					<h3>Maxwell&#8217;s Equations</h3>

					\[  \begin{aligned}
					\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} &amp; = \frac{4\pi}{c}\vec{\mathbf{j}} \\   \nabla \cdot \vec{\mathbf{E}} &amp; = 4 \pi \rho \\
					\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} &amp; = \vec{\mathbf{0}} \\
					\nabla \cdot \vec{\mathbf{B}} &amp; = 0 \end{aligned}
					\]
				</section>

				<section>
					<h3>TeX Macros</h3>

					Here is a common vector space:
					\[L^2(\R) = \set{u : \R \to \R}{\int_\R |u|^2 &lt; +\infty}\]
					used in functional analysis.
				</section>

				<section>
					<section>
						<h3>The Lorenz Equations</h3>

						<div class="fragment">
							\[\begin{aligned}
							\dot{x} &amp; = \sigma(y-x) \\
							\dot{y} &amp; = \rho x - y - xz \\
							\dot{z} &amp; = -\beta z + xy
							\end{aligned} \]
						</div>
					</section>

					<section>
						<h3>The Cauchy-Schwarz Inequality</h3>

						<div class="fragment">
							\[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \]
						</div>
					</section>

					<section>
						<h3>A Cross Product Formula</h3>

						<div class="fragment">
							\[\mathbf{V}_1 \times \mathbf{V}_2 =  \begin{vmatrix}
							\mathbf{i} &amp; \mathbf{j} &amp; \mathbf{k} \\
							\frac{\partial X}{\partial u} &amp;  \frac{\partial Y}{\partial u} &amp; 0 \\
							\frac{\partial X}{\partial v} &amp;  \frac{\partial Y}{\partial v} &amp; 0
							\end{vmatrix}  \]
						</div>
					</section>

					<section>
						<h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3>

						<div class="fragment">
							\[P(E)   = {n \choose k} p^k (1-p)^{ n-k} \]
						</div>
					</section>

					<section>
						<h3>An Identity of Ramanujan</h3>

						<div class="fragment">
							\[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
							1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
							{1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
						</div>
					</section>

					<section>
						<h3>A Rogers-Ramanujan Identity</h3>

						<div class="fragment">
							\[  1 +  \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
							\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
						</div>
					</section>

					<section>
						<h3>Maxwell&#8217;s Equations</h3>

						<div class="fragment">
							\[  \begin{aligned}
							\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} &amp; = \frac{4\pi}{c}\vec{\mathbf{j}} \\   \nabla \cdot \vec{\mathbf{E}} &amp; = 4 \pi \rho \\
							\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} &amp; = \vec{\mathbf{0}} \\
							\nabla \cdot \vec{\mathbf{B}} &amp; = 0 \end{aligned}
							\]
						</div>
					</section>

					<section>
						<h3>TeX Macros</h3>

						Here is a common vector space:
						\[L^2(\R) = \set{u : \R \to \R}{\int_\R |u|^2 &lt; +\infty}\]
						used in functional analysis.
					</section>
				</section>

			</div>

		</div>

		<script src="../dist/reveal.js"></script>
		<script src="../plugin/math/math.js"></script>
		<script>
			Reveal.initialize({
				history: true,
				transition: 'linear',

				mathjax2: {
					config: 'TeX-AMS_HTML-full',
					TeX: {
						Macros: {
							R: '\\mathbb{R}',
							set: [ '\\left\\{#1 \\; ; \\; #2\\right\\}', 2 ]
						}
					}
				},

				// There are three typesetters available
				// RevealMath.MathJax2 (default)
				// RevealMath.MathJax3
				// RevealMath.KaTeX
				//
				// More info at https://revealjs.com/math/
				plugins: [ RevealMath.MathJax2 ]
			});
		</script>

	</body>
</html>