aboutsummaryrefslogtreecommitdiff
path: root/src/table/table.rs
blob: ea8471d0655847979dd9e01c1191a2f2fd4392ae (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
use std::borrow::Borrow;
use std::collections::{BTreeMap, BTreeSet, HashMap};
use std::sync::Arc;

use async_trait::async_trait;
use futures::stream::*;
use serde::{Deserialize, Serialize};
use serde_bytes::ByteBuf;

use opentelemetry::{
	trace::{FutureExt, TraceContextExt, Tracer},
	Context,
};

use garage_db as db;

use garage_util::background::BackgroundRunner;
use garage_util::data::*;
use garage_util::error::Error;
use garage_util::metrics::RecordDuration;
use garage_util::migrate::Migrate;

use garage_rpc::rpc_helper::QuorumSetResultTracker;
use garage_rpc::system::System;
use garage_rpc::*;

use crate::crdt::Crdt;
use crate::data::*;
use crate::gc::*;
use crate::merkle::*;
use crate::queue::InsertQueueWorker;
use crate::replication::*;
use crate::schema::*;
use crate::sync::*;
use crate::util::*;

pub struct Table<F: TableSchema, R: TableReplication> {
	pub system: Arc<System>,
	pub data: Arc<TableData<F, R>>,
	pub merkle_updater: Arc<MerkleUpdater<F, R>>,
	pub syncer: Arc<TableSyncer<F, R>>,
	gc: Arc<TableGc<F, R>>,
	endpoint: Arc<Endpoint<TableRpc<F>, Self>>,
}

#[derive(Serialize, Deserialize)]
pub(crate) enum TableRpc<F: TableSchema> {
	Ok,

	ReadEntry(F::P, F::S),
	ReadEntryResponse(Option<ByteBuf>),

	// Read range: read all keys in partition P, possibly starting at a certain sort key offset
	ReadRange {
		partition: F::P,
		begin_sort_key: Option<F::S>,
		filter: Option<F::Filter>,
		limit: usize,
		enumeration_order: EnumerationOrder,
	},

	Update(Vec<Arc<ByteBuf>>),
}

impl<F: TableSchema> Rpc for TableRpc<F> {
	type Response = Result<TableRpc<F>, Error>;
}

impl<F: TableSchema, R: TableReplication> Table<F, R> {
	// =============== PUBLIC INTERFACE FUNCTIONS (new, insert, get, etc) ===============

	pub fn new(instance: F, replication: R, system: Arc<System>, db: &db::Db) -> Arc<Self> {
		let endpoint = system
			.netapp
			.endpoint(format!("garage_table/table.rs/Rpc:{}", F::TABLE_NAME));

		let data = TableData::new(system.clone(), instance, replication, db);

		let merkle_updater = MerkleUpdater::new(data.clone());

		let syncer = TableSyncer::new(system.clone(), data.clone(), merkle_updater.clone());
		let gc = TableGc::new(system.clone(), data.clone());

		system.layout_manager.add_table(F::TABLE_NAME);

		let table = Arc::new(Self {
			system,
			data,
			merkle_updater,
			gc,
			syncer,
			endpoint,
		});

		table.endpoint.set_handler(table.clone());

		table
	}

	pub fn spawn_workers(self: &Arc<Self>, bg: &BackgroundRunner) {
		self.merkle_updater.spawn_workers(bg);
		self.syncer.spawn_workers(bg);
		self.gc.spawn_workers(bg);
		bg.spawn_worker(InsertQueueWorker(self.clone()));
	}

	pub async fn insert(&self, e: &F::E) -> Result<(), Error> {
		let tracer = opentelemetry::global::tracer("garage_table");
		let span = tracer.start(format!("{} insert", F::TABLE_NAME));

		self.insert_internal(e)
			.bound_record_duration(&self.data.metrics.put_request_duration)
			.with_context(Context::current_with_span(span))
			.await?;

		self.data.metrics.put_request_counter.add(1);

		Ok(())
	}

	async fn insert_internal(&self, e: &F::E) -> Result<(), Error> {
		let hash = e.partition_key().hash();
		let who = self.data.replication.write_sets(&hash);

		let e_enc = Arc::new(ByteBuf::from(e.encode()?));
		let rpc = TableRpc::<F>::Update(vec![e_enc]);

		self.system
			.rpc_helper()
			.try_write_many_sets(
				&self.endpoint,
				who.as_ref(),
				rpc,
				RequestStrategy::with_priority(PRIO_NORMAL)
					.with_quorum(self.data.replication.write_quorum()),
			)
			.await?;

		Ok(())
	}

	/// Insert item locally
	pub fn queue_insert(&self, tx: &mut db::Transaction, e: &F::E) -> db::TxResult<(), Error> {
		self.data.queue_insert(tx, e)
	}

	pub async fn insert_many<I, IE>(self: &Arc<Self>, entries: I) -> Result<(), Error>
	where
		I: IntoIterator<Item = IE> + Send + Sync,
		IE: Borrow<F::E> + Send + Sync,
	{
		let tracer = opentelemetry::global::tracer("garage_table");
		let span = tracer.start(format!("{} insert_many", F::TABLE_NAME));

		self.insert_many_internal(entries)
			.bound_record_duration(&self.data.metrics.put_request_duration)
			.with_context(Context::current_with_span(span))
			.await?;

		self.data.metrics.put_request_counter.add(1);

		Ok(())
	}

	async fn insert_many_internal<I, IE>(self: &Arc<Self>, entries: I) -> Result<(), Error>
	where
		I: IntoIterator<Item = IE> + Send + Sync,
		IE: Borrow<F::E> + Send + Sync,
	{
		// The different items will have to be stored on possibly different nodes.
		// We will here batch all items into a single request for each concerned
		// node, with all of the entries it must store within that request.
		// Each entry has to be saved to a specific list of "write sets", i.e. a set
		// of node within which a quorum must be achieved. In normal operation, there
		// is a single write set which corresponds to the quorum in the current
		// cluster layout, but when the layout is updated, multiple write sets might
		// have to be handled at once. Here, since we are sending many entries, we
		// will have to handle many write sets in all cases. The algorithm is thus
		// to send one request to each node with all the items it must save,
		// and keep track of the OK responses within each write set: if for all sets
		// a quorum of nodes has answered OK, then the insert has succeeded and
		// consistency properties (read-after-write) are preserved.

		let quorum = self.data.replication.write_quorum();

		// Serialize all entries and compute the write sets for each of them.
		// In the case of sharded table replication, this also takes an "ack lock"
		// to the layout manager to avoid ack'ing newer versions which are not
		// taken into account by writes in progress (the ack can happen later, once
		// all writes that didn't take the new layout into account are finished).
		// These locks are released when entries_vec is dropped, i.e. when this
		// function returns.
		let mut entries_vec = Vec::new();
		for entry in entries.into_iter() {
			let entry = entry.borrow();
			let hash = entry.partition_key().hash();
			let mut write_sets = self.data.replication.write_sets(&hash);
			for set in write_sets.as_mut().iter_mut() {
				// Sort nodes in each write sets to merge write sets with same
				// nodes but in possibly different orders
				set.sort();
			}
			let e_enc = Arc::new(ByteBuf::from(entry.encode()?));
			entries_vec.push((write_sets, e_enc));
		}

		// Compute a deduplicated list of all of the write sets,
		// and compute an index from each node to the position of the sets in which
		// it takes part, to optimize the detection of a quorum.
		let mut write_sets = entries_vec
			.iter()
			.flat_map(|(wss, _)| wss.as_ref().iter().map(|ws| ws.as_slice()))
			.collect::<Vec<&[Uuid]>>();
		write_sets.sort();
		write_sets.dedup();

		let mut result_tracker = QuorumSetResultTracker::new(&write_sets, quorum);

		// Build a map of all nodes to the entries that must be sent to that node.
		let mut call_list: HashMap<Uuid, Vec<_>> = HashMap::new();
		for (write_sets, entry_enc) in entries_vec.iter() {
			for write_set in write_sets.as_ref().iter() {
				for node in write_set.iter() {
					let node_entries = call_list.entry(*node).or_default();
					match node_entries.last() {
						Some(x) if Arc::ptr_eq(x, entry_enc) => {
							// skip if entry already in list to send to this node
							// (could happen if node is in several write sets for this entry)
						}
						_ => {
							node_entries.push(entry_enc.clone());
						}
					}
				}
			}
		}

		// Build futures to actually perform each of the corresponding RPC calls
		let call_futures = call_list.into_iter().map(|(node, entries)| {
			let this = self.clone();
			async move {
				let rpc = TableRpc::<F>::Update(entries);
				let resp = this
					.system
					.rpc_helper()
					.call(
						&this.endpoint,
						node,
						rpc,
						RequestStrategy::with_priority(PRIO_NORMAL).with_quorum(quorum),
					)
					.await;
				(node, resp)
			}
		});

		// Run all requests in parallel thanks to FuturesUnordered, and collect results.
		let mut resps = call_futures.collect::<FuturesUnordered<_>>();

		while let Some((node, resp)) = resps.next().await {
			result_tracker.register_result(node, resp.map(|_| ()));

			if result_tracker.all_quorums_ok() {
				// Success

				// Continue all other requests in background
				tokio::spawn(async move {
					resps.collect::<Vec<(Uuid, Result<_, _>)>>().await;
				});

				return Ok(());
			}

			if result_tracker.too_many_failures() {
				// Too many errors in this set, we know we won't get a quorum
				break;
			}
		}

		// Failure, could not get quorum within at least one set
		Err(result_tracker.quorum_error())
	}

	pub async fn get(
		self: &Arc<Self>,
		partition_key: &F::P,
		sort_key: &F::S,
	) -> Result<Option<F::E>, Error> {
		let tracer = opentelemetry::global::tracer("garage_table");
		let span = tracer.start(format!("{} get", F::TABLE_NAME));

		let res = self
			.get_internal(partition_key, sort_key)
			.bound_record_duration(&self.data.metrics.get_request_duration)
			.with_context(Context::current_with_span(span))
			.await?;

		self.data.metrics.get_request_counter.add(1);

		Ok(res)
	}

	async fn get_internal(
		self: &Arc<Self>,
		partition_key: &F::P,
		sort_key: &F::S,
	) -> Result<Option<F::E>, Error> {
		let hash = partition_key.hash();
		let who = self.data.replication.read_nodes(&hash);

		let rpc = TableRpc::<F>::ReadEntry(partition_key.clone(), sort_key.clone());
		let resps = self
			.system
			.rpc_helper()
			.try_call_many(
				&self.endpoint,
				&who,
				rpc,
				RequestStrategy::with_priority(PRIO_NORMAL)
					.with_quorum(self.data.replication.read_quorum()),
			)
			.await?;

		let mut ret = None;
		let mut not_all_same = false;
		for resp in resps {
			if let TableRpc::ReadEntryResponse(value) = resp {
				if let Some(v_bytes) = value {
					let v = self.data.decode_entry(v_bytes.as_slice())?;
					ret = match ret {
						None => Some(v),
						Some(mut x) => {
							if x != v {
								not_all_same = true;
								x.merge(&v);
							}
							Some(x)
						}
					}
				}
			} else {
				return Err(Error::Message("Invalid return value to read".to_string()));
			}
		}
		if let Some(ret_entry) = &ret {
			if not_all_same {
				let self2 = self.clone();
				let ent2 = ret_entry.clone();
				tokio::spawn(async move {
					if let Err(e) = self2.repair_on_read(&who[..], ent2).await {
						warn!("Error doing repair on read: {}", e);
					}
				});
			}
		}

		Ok(ret)
	}

	pub async fn get_range(
		self: &Arc<Self>,
		partition_key: &F::P,
		begin_sort_key: Option<F::S>,
		filter: Option<F::Filter>,
		limit: usize,
		enumeration_order: EnumerationOrder,
	) -> Result<Vec<F::E>, Error> {
		let tracer = opentelemetry::global::tracer("garage_table");
		let span = tracer.start(format!("{} get_range", F::TABLE_NAME));

		let res = self
			.get_range_internal(
				partition_key,
				begin_sort_key,
				filter,
				limit,
				enumeration_order,
			)
			.bound_record_duration(&self.data.metrics.get_request_duration)
			.with_context(Context::current_with_span(span))
			.await?;

		self.data.metrics.get_request_counter.add(1);

		Ok(res)
	}

	async fn get_range_internal(
		self: &Arc<Self>,
		partition_key: &F::P,
		begin_sort_key: Option<F::S>,
		filter: Option<F::Filter>,
		limit: usize,
		enumeration_order: EnumerationOrder,
	) -> Result<Vec<F::E>, Error> {
		let hash = partition_key.hash();
		let who = self.data.replication.read_nodes(&hash);

		let rpc = TableRpc::<F>::ReadRange {
			partition: partition_key.clone(),
			begin_sort_key,
			filter,
			limit,
			enumeration_order,
		};

		let resps = self
			.system
			.rpc_helper()
			.try_call_many(
				&self.endpoint,
				&who,
				rpc,
				RequestStrategy::with_priority(PRIO_NORMAL)
					.with_quorum(self.data.replication.read_quorum()),
			)
			.await?;

		let mut ret: BTreeMap<Vec<u8>, F::E> = BTreeMap::new();
		let mut to_repair = BTreeSet::new();
		for resp in resps {
			if let TableRpc::Update(entries) = resp {
				for entry_bytes in entries.iter() {
					let entry = self.data.decode_entry(entry_bytes.as_slice())?;
					let entry_key = self.data.tree_key(entry.partition_key(), entry.sort_key());
					match ret.get_mut(&entry_key) {
						Some(e) => {
							if *e != entry {
								e.merge(&entry);
								to_repair.insert(entry_key.clone());
							}
						}
						None => {
							ret.insert(entry_key, entry);
						}
					}
				}
			} else {
				return Err(Error::unexpected_rpc_message(resp));
			}
		}

		if !to_repair.is_empty() {
			let self2 = self.clone();
			let to_repair = to_repair
				.into_iter()
				.map(|k| ret.get(&k).unwrap().clone())
				.collect::<Vec<_>>();
			tokio::spawn(async move {
				for v in to_repair {
					if let Err(e) = self2.repair_on_read(&who[..], v).await {
						warn!("Error doing repair on read: {}", e);
					}
				}
			});
		}

		// At this point, the `ret` btreemap might contain more than `limit`
		// items, because nodes might have returned us each `limit` items
		// but for different keys. We have to take only the first `limit` items
		// in this map, in the specified enumeration order, for two reasons:
		// 1. To return to the user no more than the number of items that they requested
		// 2. To return only items for which we have a read quorum: we do not know
		//    that we have a read quorum for the items after the first `limit`
		//    of them
		let ret_vec = match enumeration_order {
			EnumerationOrder::Forward => ret
				.into_iter()
				.take(limit)
				.map(|(_k, v)| v)
				.collect::<Vec<_>>(),
			EnumerationOrder::Reverse => ret
				.into_iter()
				.rev()
				.take(limit)
				.map(|(_k, v)| v)
				.collect::<Vec<_>>(),
		};
		Ok(ret_vec)
	}

	// =============== UTILITY FUNCTION FOR CLIENT OPERATIONS ===============

	async fn repair_on_read(&self, who: &[Uuid], what: F::E) -> Result<(), Error> {
		let what_enc = Arc::new(ByteBuf::from(what.encode()?));
		self.system
			.rpc_helper()
			.try_call_many(
				&self.endpoint,
				who,
				TableRpc::<F>::Update(vec![what_enc]),
				RequestStrategy::with_priority(PRIO_NORMAL).with_quorum(who.len()),
			)
			.await?;
		Ok(())
	}
}

#[async_trait]
impl<F: TableSchema, R: TableReplication> EndpointHandler<TableRpc<F>> for Table<F, R> {
	async fn handle(
		self: &Arc<Self>,
		msg: &TableRpc<F>,
		_from: NodeID,
	) -> Result<TableRpc<F>, Error> {
		match msg {
			TableRpc::ReadEntry(key, sort_key) => {
				let value = self.data.read_entry(key, sort_key)?;
				Ok(TableRpc::ReadEntryResponse(value))
			}
			TableRpc::ReadRange {
				partition,
				begin_sort_key,
				filter,
				limit,
				enumeration_order,
			} => {
				let values = self.data.read_range(
					partition,
					begin_sort_key,
					filter,
					*limit,
					*enumeration_order,
				)?;
				Ok(TableRpc::Update(values))
			}
			TableRpc::Update(pairs) => {
				self.data.update_many(pairs)?;
				Ok(TableRpc::Ok)
			}
			m => Err(Error::unexpected_rpc_message(m)),
		}
	}
}