1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
|
use std::collections::HashMap;
use std::net::{IpAddr, SocketAddr};
use std::sync::{Arc, RwLock};
use log::{debug, error, info, trace, warn};
use arc_swap::ArcSwapOption;
use async_trait::async_trait;
use serde::{Deserialize, Serialize};
use sodiumoxide::crypto::auth;
use sodiumoxide::crypto::sign::ed25519;
use futures::stream::futures_unordered::FuturesUnordered;
use futures::stream::StreamExt;
use tokio::net::{TcpListener, TcpSocket, TcpStream};
use tokio::select;
use tokio::sync::{mpsc, watch};
use crate::client::*;
use crate::endpoint::*;
use crate::error::*;
use crate::message::*;
use crate::server::*;
/// A node's identifier, which is also its public cryptographic key
pub type NodeID = sodiumoxide::crypto::sign::ed25519::PublicKey;
/// A node's secret key
pub type NodeKey = sodiumoxide::crypto::sign::ed25519::SecretKey;
/// A network key
pub type NetworkKey = sodiumoxide::crypto::auth::Key;
/// Tag which is exchanged between client and server upon connection establishment
/// to check that they are running compatible versions of Netapp,
/// composed of 8 bytes for Netapp version and 8 bytes for client version
pub(crate) type VersionTag = [u8; 16];
/// Value of garage_net version used in the version tag
/// We are no longer using prefix `netapp` as garage_net is forked from the netapp crate.
/// Since Garage v1.0, we have replaced the prefix by `grgnet` (shorthand for garage_net).
pub(crate) const NETAPP_VERSION_TAG: u64 = 0x6772676e65740010; // grgnet 0x0010 (1.0)
/// HelloMessage is sent by the client on a Netapp connection to indicate
/// that they are also a server and ready to receive incoming connections
/// at the specified address and port. If the client doesn't know their
/// public address, they don't need to specify it and we look at the
/// remote address of the socket is used instead.
#[derive(Serialize, Deserialize, Debug)]
pub(crate) struct HelloMessage {
pub server_addr: Option<IpAddr>,
pub server_port: u16,
}
impl Message for HelloMessage {
type Response = ();
}
type OnConnectHandler = Box<dyn Fn(NodeID, SocketAddr, bool) + Send + Sync>;
type OnDisconnectHandler = Box<dyn Fn(NodeID, bool) + Send + Sync>;
/// NetApp is the main class that handles incoming and outgoing connections.
///
/// NetApp can be used in a stand-alone fashion or together with a peering strategy.
/// If using it alone, you will want to set `on_connect` and `on_disconnect` events
/// in order to manage information about the current peer list.
pub struct NetApp {
bind_outgoing_to: Option<IpAddr>,
listen_params: ArcSwapOption<ListenParams>,
/// Version tag, 8 bytes for netapp version, 8 bytes for app version
pub version_tag: VersionTag,
/// Network secret key
pub netid: auth::Key,
/// Our peer ID
pub id: NodeID,
/// Private key associated with our peer ID
pub privkey: ed25519::SecretKey,
pub(crate) server_conns: RwLock<HashMap<NodeID, Arc<ServerConn>>>,
pub(crate) client_conns: RwLock<HashMap<NodeID, Arc<ClientConn>>>,
pub(crate) endpoints: RwLock<HashMap<String, DynEndpoint>>,
hello_endpoint: ArcSwapOption<Endpoint<HelloMessage, NetApp>>,
on_connected_handler: ArcSwapOption<OnConnectHandler>,
on_disconnected_handler: ArcSwapOption<OnDisconnectHandler>,
}
struct ListenParams {
listen_addr: SocketAddr,
public_addr: Option<SocketAddr>,
}
impl NetApp {
/// Creates a new instance of NetApp, which can serve either as a full p2p node,
/// or just as a passive client. To upgrade to a full p2p node, spawn a listener
/// using `.listen()`
///
/// Our Peer ID is the public key associated to the secret key given here.
pub fn new(
app_version_tag: u64,
netid: auth::Key,
privkey: ed25519::SecretKey,
bind_outgoing_to: Option<IpAddr>,
) -> Arc<Self> {
let mut version_tag = [0u8; 16];
version_tag[0..8].copy_from_slice(&u64::to_be_bytes(NETAPP_VERSION_TAG)[..]);
version_tag[8..16].copy_from_slice(&u64::to_be_bytes(app_version_tag)[..]);
let id = privkey.public_key();
let netapp = Arc::new(Self {
bind_outgoing_to,
listen_params: ArcSwapOption::new(None),
version_tag,
netid,
id,
privkey,
server_conns: RwLock::new(HashMap::new()),
client_conns: RwLock::new(HashMap::new()),
endpoints: RwLock::new(HashMap::new()),
hello_endpoint: ArcSwapOption::new(None),
on_connected_handler: ArcSwapOption::new(None),
on_disconnected_handler: ArcSwapOption::new(None),
});
netapp
.hello_endpoint
.swap(Some(netapp.endpoint("garage_net/netapp.rs/Hello".into())));
netapp
.hello_endpoint
.load_full()
.unwrap()
.set_handler(netapp.clone());
netapp
}
/// Set the handler to be called when a new connection (incoming or outgoing) has
/// been successfully established. Do not set this if using a peering strategy,
/// as the peering strategy will need to set this itself.
pub fn on_connected<F>(&self, handler: F)
where
F: Fn(NodeID, SocketAddr, bool) + Sized + Send + Sync + 'static,
{
self.on_connected_handler
.store(Some(Arc::new(Box::new(handler))));
}
/// Set the handler to be called when an existing connection (incoming or outgoing) has
/// been closed by either party. Do not set this if using a peering strategy,
/// as the peering strategy will need to set this itself.
pub fn on_disconnected<F>(&self, handler: F)
where
F: Fn(NodeID, bool) + Sized + Send + Sync + 'static,
{
self.on_disconnected_handler
.store(Some(Arc::new(Box::new(handler))));
}
/// Create a new endpoint with path `path`,
/// that handles messages of type `M`.
/// `H` is the type of the object that should handle requests
/// to this endpoint on the local node. If you don't want
/// to handle request on the local node (e.g. if this node
/// is only a client in the network), define the type `H`
/// to be `()`.
/// This function will panic if the endpoint has already been
/// created.
pub fn endpoint<M, H>(self: &Arc<Self>, path: String) -> Arc<Endpoint<M, H>>
where
M: Message + 'static,
H: StreamingEndpointHandler<M> + 'static,
{
let endpoint = Arc::new(Endpoint::<M, H>::new(self.clone(), path.clone()));
let endpoint_arc = EndpointArc(endpoint.clone());
if self
.endpoints
.write()
.unwrap()
.insert(path.clone(), Box::new(endpoint_arc))
.is_some()
{
panic!("Redefining endpoint: {}", path);
};
endpoint
}
/// Main listening process for our app. This future runs during the whole
/// run time of our application.
/// If this is not called, the NetApp instance remains a passive client.
pub async fn listen(
self: Arc<Self>,
listen_addr: SocketAddr,
public_addr: Option<SocketAddr>,
mut must_exit: watch::Receiver<bool>,
) {
let listen_params = ListenParams {
listen_addr,
public_addr,
};
if self
.listen_params
.swap(Some(Arc::new(listen_params)))
.is_some()
{
error!("Trying to listen on NetApp but we're already listening!");
}
let listener = TcpListener::bind(listen_addr).await.unwrap();
info!("Listening on {}", listen_addr);
let (conn_in, mut conn_out) = mpsc::unbounded_channel();
let connection_collector = tokio::spawn(async move {
let mut collection = FuturesUnordered::new();
loop {
if collection.is_empty() {
match conn_out.recv().await {
Some(f) => collection.push(f),
None => break,
}
} else {
select! {
new_fut = conn_out.recv() => {
match new_fut {
Some(f) => collection.push(f),
None => break,
}
}
result = collection.next() => {
trace!("Collected connection: {:?}", result);
}
}
}
}
debug!("Collecting last open server connections.");
while let Some(conn_res) = collection.next().await {
trace!("Collected connection: {:?}", conn_res);
}
debug!("No more server connections to collect");
});
while !*must_exit.borrow_and_update() {
let (socket, peer_addr) = select! {
sockres = listener.accept() => {
match sockres {
Ok(x) => x,
Err(e) => {
warn!("Error in listener.accept: {}", e);
continue;
}
}
},
_ = must_exit.changed() => continue,
};
info!(
"Incoming connection from {}, negotiating handshake...",
peer_addr
);
let self2 = self.clone();
let must_exit2 = must_exit.clone();
conn_in
.send(tokio::spawn(async move {
ServerConn::run(self2, socket, must_exit2)
.await
.log_err("ServerConn::run");
}))
.log_err("Failed to send connection to connection collector");
}
drop(conn_in);
connection_collector
.await
.log_err("Failed to await for connection collector");
}
/// Drop all endpoint handlers, as well as handlers for connection/disconnection
/// events. (This disables the peering strategy)
///
/// Use this when terminating to break reference cycles
pub fn drop_all_handlers(&self) {
for (_, endpoint) in self.endpoints.read().unwrap().iter() {
endpoint.drop_handler();
}
self.on_connected_handler.store(None);
self.on_disconnected_handler.store(None);
}
/// Attempt to connect to a peer, given by its ip:port and its public key.
/// The public key will be checked during the secret handshake process.
/// This function returns once the connection has been established and a
/// successful handshake was made. At this point we can send messages to
/// the other node with `Netapp::request`
pub async fn try_connect(self: Arc<Self>, ip: SocketAddr, id: NodeID) -> Result<(), Error> {
// Don't connect to ourself, we don't care
if id == self.id {
return Ok(());
}
// Don't connect if already connected
if self.client_conns.read().unwrap().contains_key(&id) {
return Ok(());
}
let stream = match self.bind_outgoing_to {
Some(addr) => {
let socket = if addr.is_ipv4() {
TcpSocket::new_v4()?
} else {
TcpSocket::new_v6()?
};
socket.bind(SocketAddr::new(addr, 0))?;
socket.connect(ip).await?
}
None => TcpStream::connect(ip).await?,
};
info!("Connected to {}, negotiating handshake...", ip);
ClientConn::init(self, stream, id).await?;
Ok(())
}
/// Close the outgoing connection we have to a node specified by its public key,
/// if such a connection is currently open.
pub fn disconnect(self: &Arc<Self>, id: &NodeID) {
let conn = self.client_conns.write().unwrap().remove(id);
// If id is ourself, we're not supposed to have a connection open
if *id == self.id {
// sanity check
assert!(conn.is_none(), "had a connection to local node");
return;
}
if let Some(c) = conn {
debug!(
"Closing connection to {} ({})",
hex::encode(&c.peer_id[..8]),
c.remote_addr
);
c.close();
// call on_disconnected_handler immediately, since the connection was removed
let id = *id;
let self2 = self.clone();
tokio::spawn(async move {
if let Some(h) = self2.on_disconnected_handler.load().as_ref() {
h(id, false);
}
});
}
}
// Called from conn.rs when an incoming connection is successfully established
// Registers the connection in our list of connections
// Do not yet call the on_connected handler, because we don't know if the remote
// has an actual IP address and port we can call them back on.
// We will know this when they send a Hello message, which is handled below.
pub(crate) fn connected_as_server(&self, id: NodeID, conn: Arc<ServerConn>) {
info!(
"Accepted connection from {} at {}",
hex::encode(&id[..8]),
conn.remote_addr
);
self.server_conns.write().unwrap().insert(id, conn);
}
// Handle hello message from a client. This message is used for them to tell us
// that they are listening on a certain port number on which we can call them back.
// At this point we know they are a full network member, and not just a client,
// and we call the on_connected handler so that the peering strategy knows
// we have a new potential peer
// Called from conn.rs when an incoming connection is closed.
// We deregister the connection from server_conns and call the
// handler registered by on_disconnected
pub(crate) fn disconnected_as_server(&self, id: &NodeID, conn: Arc<ServerConn>) {
info!("Connection from {} closed", hex::encode(&id[..8]));
let mut conn_list = self.server_conns.write().unwrap();
if let Some(c) = conn_list.get(id) {
if Arc::ptr_eq(c, &conn) {
conn_list.remove(id);
drop(conn_list);
if let Some(h) = self.on_disconnected_handler.load().as_ref() {
h(conn.peer_id, true);
}
}
}
}
// Called from conn.rs when an outgoinc connection is successfully established.
// The connection is registered in self.client_conns, and the
// on_connected handler is called.
//
// Since we are ourself listening, we send them a Hello message so that
// they know on which port to call us back. (TODO: don't do this if we are
// just a simple client and not a full p2p node)
pub(crate) fn connected_as_client(&self, id: NodeID, conn: Arc<ClientConn>) {
info!("Connection established to {}", hex::encode(&id[..8]));
{
let old_c_opt = self.client_conns.write().unwrap().insert(id, conn.clone());
if let Some(old_c) = old_c_opt {
tokio::spawn(async move { old_c.close() });
}
}
if let Some(h) = self.on_connected_handler.load().as_ref() {
h(conn.peer_id, conn.remote_addr, false);
}
if let Some(lp) = self.listen_params.load_full() {
let server_addr = lp.public_addr.map(|x| x.ip());
let server_port = lp
.public_addr
.map(|x| x.port())
.unwrap_or(lp.listen_addr.port());
let hello_endpoint = self.hello_endpoint.load_full().unwrap();
tokio::spawn(async move {
hello_endpoint
.call(
&conn.peer_id,
HelloMessage {
server_addr,
server_port,
},
PRIO_NORMAL,
)
.await
.map(|_| ())
.log_err("Sending hello message");
});
}
}
// Called from conn.rs when an outgoinc connection is closed.
// The connection is removed from conn_list, and the on_disconnected handler
// is called.
pub(crate) fn disconnected_as_client(&self, id: &NodeID, conn: Arc<ClientConn>) {
info!("Connection to {} closed", hex::encode(&id[..8]));
let mut conn_list = self.client_conns.write().unwrap();
if let Some(c) = conn_list.get(id) {
if Arc::ptr_eq(c, &conn) {
conn_list.remove(id);
drop(conn_list);
if let Some(h) = self.on_disconnected_handler.load().as_ref() {
h(conn.peer_id, false);
}
}
}
// else case: happens if connection was removed in .disconnect()
// in which case on_disconnected_handler was already called
}
}
#[async_trait]
impl EndpointHandler<HelloMessage> for NetApp {
async fn handle(self: &Arc<Self>, msg: &HelloMessage, from: NodeID) {
debug!("Hello from {:?}: {:?}", hex::encode(&from[..8]), msg);
if let Some(h) = self.on_connected_handler.load().as_ref() {
if let Some(c) = self.server_conns.read().unwrap().get(&from) {
let remote_ip = msg.server_addr.unwrap_or_else(|| c.remote_addr.ip());
let remote_addr = SocketAddr::new(remote_ip, msg.server_port);
h(from, remote_addr, true);
}
}
}
}
|