1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
|
use std::convert::TryInto;
use std::path::PathBuf;
use std::sync::Arc;
use std::time::Duration;
use arc_swap::ArcSwapOption;
use async_trait::async_trait;
use serde::{Deserialize, Serialize};
use futures::future::*;
use tokio::fs;
use tokio::io::{AsyncReadExt, AsyncWriteExt};
use tokio::select;
use tokio::sync::{mpsc, watch, Mutex, Notify};
use opentelemetry::{
trace::{FutureExt as OtelFutureExt, TraceContextExt, Tracer},
Context, KeyValue,
};
use garage_db as db;
use garage_db::counted_tree_hack::CountedTree;
use garage_util::background::*;
use garage_util::data::*;
use garage_util::error::*;
use garage_util::metrics::RecordDuration;
use garage_util::time::*;
use garage_util::tranquilizer::Tranquilizer;
use garage_rpc::system::System;
use garage_rpc::*;
use garage_table::replication::{TableReplication, TableShardedReplication};
use crate::block::*;
use crate::metrics::*;
use crate::rc::*;
use crate::repair::*;
/// Size under which data will be stored inlined in database instead of as files
pub const INLINE_THRESHOLD: usize = 3072;
// Timeout for RPCs that read and write blocks to remote nodes
const BLOCK_RW_TIMEOUT: Duration = Duration::from_secs(30);
// Timeout for RPCs that ask other nodes whether they need a copy
// of a given block before we delete it locally
const NEED_BLOCK_QUERY_TIMEOUT: Duration = Duration::from_secs(5);
// The delay between the time where a resync operation fails
// and the time when it is retried, with exponential backoff
// (multiplied by 2, 4, 8, 16, etc. for every consecutive failure).
const RESYNC_RETRY_DELAY: Duration = Duration::from_secs(60);
// The minimum retry delay is 60 seconds = 1 minute
// The maximum retry delay is 60 seconds * 2^6 = 60 seconds << 6 = 64 minutes (~1 hour)
const RESYNC_RETRY_DELAY_MAX_BACKOFF_POWER: u64 = 6;
// The delay between the moment when the reference counter
// drops to zero, and the moment where we allow ourselves
// to delete the block locally.
pub(crate) const BLOCK_GC_DELAY: Duration = Duration::from_secs(600);
/// RPC messages used to share blocks of data between nodes
#[derive(Debug, Serialize, Deserialize)]
pub enum BlockRpc {
Ok,
/// Message to ask for a block of data, by hash
GetBlock(Hash),
/// Message to send a block of data, either because requested, of for first delivery of new
/// block
PutBlock {
hash: Hash,
data: DataBlock,
},
/// Ask other node if they should have this block, but don't actually have it
NeedBlockQuery(Hash),
/// Response : whether the node do require that block
NeedBlockReply(bool),
}
impl Rpc for BlockRpc {
type Response = Result<BlockRpc, Error>;
}
/// The block manager, handling block exchange between nodes, and block storage on local node
pub struct BlockManager {
/// Replication strategy, allowing to find on which node blocks should be located
pub replication: TableShardedReplication,
/// Directory in which block are stored
pub data_dir: PathBuf,
compression_level: Option<i32>,
background_tranquility: u32,
mutation_lock: Mutex<BlockManagerLocked>,
pub(crate) rc: BlockRc,
resync_queue: CountedTree,
resync_notify: Notify,
resync_errors: CountedTree,
pub(crate) system: Arc<System>,
endpoint: Arc<Endpoint<BlockRpc, Self>>,
metrics: BlockManagerMetrics,
tx_scrub_command: ArcSwapOption<mpsc::Sender<ScrubWorkerCommand>>,
}
// This custom struct contains functions that must only be ran
// when the lock is held. We ensure that it is the case by storing
// it INSIDE a Mutex.
struct BlockManagerLocked();
enum ResyncIterResult {
BusyDidSomething,
BusyDidNothing,
IdleFor(Duration),
}
impl BlockManager {
pub fn new(
db: &db::Db,
data_dir: PathBuf,
compression_level: Option<i32>,
background_tranquility: u32,
replication: TableShardedReplication,
system: Arc<System>,
) -> Arc<Self> {
let rc = db
.open_tree("block_local_rc")
.expect("Unable to open block_local_rc tree");
let rc = BlockRc::new(rc);
let resync_queue = db
.open_tree("block_local_resync_queue")
.expect("Unable to open block_local_resync_queue tree");
let resync_queue =
CountedTree::new(resync_queue).expect("Could not count block_local_resync_queue");
let resync_errors = db
.open_tree("block_local_resync_errors")
.expect("Unable to open block_local_resync_errors tree");
let resync_errors =
CountedTree::new(resync_errors).expect("Could not count block_local_resync_errors");
let endpoint = system
.netapp
.endpoint("garage_block/manager.rs/Rpc".to_string());
let manager_locked = BlockManagerLocked();
let metrics = BlockManagerMetrics::new(resync_queue.clone(), resync_errors.clone());
let block_manager = Arc::new(Self {
replication,
data_dir,
compression_level,
background_tranquility,
mutation_lock: Mutex::new(manager_locked),
rc,
resync_queue,
resync_notify: Notify::new(),
resync_errors,
system,
endpoint,
metrics,
tx_scrub_command: ArcSwapOption::new(None),
});
block_manager.endpoint.set_handler(block_manager.clone());
block_manager.clone().spawn_background_workers();
block_manager
}
/// Ask nodes that might have a (possibly compressed) block for it
async fn rpc_get_raw_block(&self, hash: &Hash) -> Result<DataBlock, Error> {
let who = self.replication.read_nodes(hash);
let resps = self
.system
.rpc
.try_call_many(
&self.endpoint,
&who[..],
BlockRpc::GetBlock(*hash),
RequestStrategy::with_priority(PRIO_NORMAL)
.with_quorum(1)
.with_timeout(BLOCK_RW_TIMEOUT)
.interrupt_after_quorum(true),
)
.await?;
for resp in resps {
if let BlockRpc::PutBlock { data, .. } = resp {
return Ok(data);
}
}
Err(Error::Message(format!(
"Unable to read block {:?}: no valid blocks returned",
hash
)))
}
// ---- Public interface ----
/// Ask nodes that might have a block for it
pub async fn rpc_get_block(&self, hash: &Hash) -> Result<Vec<u8>, Error> {
self.rpc_get_raw_block(hash).await?.verify_get(*hash)
}
/// Send block to nodes that should have it
pub async fn rpc_put_block(&self, hash: Hash, data: Vec<u8>) -> Result<(), Error> {
let who = self.replication.write_nodes(&hash);
let data = DataBlock::from_buffer(data, self.compression_level);
self.system
.rpc
.try_call_many(
&self.endpoint,
&who[..],
BlockRpc::PutBlock { hash, data },
RequestStrategy::with_priority(PRIO_NORMAL)
.with_quorum(self.replication.write_quorum())
.with_timeout(BLOCK_RW_TIMEOUT),
)
.await?;
Ok(())
}
/// Get lenght of resync queue
pub fn resync_queue_len(&self) -> Result<usize, Error> {
// This currently can't return an error because the CountedTree hack
// doesn't error on .len(), but this will change when we remove the hack
// (hopefully someday!)
Ok(self.resync_queue.len())
}
/// Get number of blocks that have an error
pub fn resync_errors_len(&self) -> Result<usize, Error> {
// (see resync_queue_len comment)
Ok(self.resync_errors.len())
}
/// Get number of items in the refcount table
pub fn rc_len(&self) -> Result<usize, Error> {
Ok(self.rc.rc.len()?)
}
/// Send command to start/stop/manager scrub worker
pub async fn send_scrub_command(&self, cmd: ScrubWorkerCommand) {
let _ = self
.tx_scrub_command
.load()
.as_ref()
.unwrap()
.send(cmd)
.await;
}
//// ----- Managing the reference counter ----
/// Increment the number of time a block is used, putting it to resynchronization if it is
/// required, but not known
pub fn block_incref(
self: &Arc<Self>,
tx: &mut db::Transaction,
hash: Hash,
) -> db::TxOpResult<()> {
if self.rc.block_incref(tx, &hash)? {
// When the reference counter is incremented, there is
// normally a node that is responsible for sending us the
// data of the block. However that operation may fail,
// so in all cases we add the block here to the todo list
// to check later that it arrived correctly, and if not
// we will fecth it from someone.
let this = self.clone();
tokio::spawn(async move {
if let Err(e) = this.put_to_resync(&hash, 2 * BLOCK_RW_TIMEOUT) {
error!("Block {:?} could not be put in resync queue: {}.", hash, e);
}
});
}
Ok(())
}
/// Decrement the number of time a block is used
pub fn block_decref(
self: &Arc<Self>,
tx: &mut db::Transaction,
hash: Hash,
) -> db::TxOpResult<()> {
if self.rc.block_decref(tx, &hash)? {
// When the RC is decremented, it might drop to zero,
// indicating that we don't need the block.
// There is a delay before we garbage collect it;
// make sure that it is handled in the resync loop
// after that delay has passed.
let this = self.clone();
tokio::spawn(async move {
if let Err(e) = this.put_to_resync(&hash, BLOCK_GC_DELAY + Duration::from_secs(10))
{
error!("Block {:?} could not be put in resync queue: {}.", hash, e);
}
});
}
Ok(())
}
// ---- Reading and writing blocks locally ----
/// Write a block to disk
async fn write_block(&self, hash: &Hash, data: &DataBlock) -> Result<BlockRpc, Error> {
let write_size = data.inner_buffer().len() as u64;
let res = self
.mutation_lock
.lock()
.await
.write_block(hash, data, self)
.bound_record_duration(&self.metrics.block_write_duration)
.await?;
self.metrics.bytes_written.add(write_size);
Ok(res)
}
/// Read block from disk, verifying it's integrity
pub(crate) async fn read_block(&self, hash: &Hash) -> Result<BlockRpc, Error> {
let data = self
.read_block_internal(hash)
.bound_record_duration(&self.metrics.block_read_duration)
.await?;
self.metrics
.bytes_read
.add(data.inner_buffer().len() as u64);
Ok(BlockRpc::PutBlock { hash: *hash, data })
}
async fn read_block_internal(&self, hash: &Hash) -> Result<DataBlock, Error> {
let mut path = self.block_path(hash);
let compressed = match self.is_block_compressed(hash).await {
Ok(c) => c,
Err(e) => {
// Not found but maybe we should have had it ??
self.put_to_resync(hash, 2 * BLOCK_RW_TIMEOUT)?;
return Err(Into::into(e));
}
};
if compressed {
path.set_extension("zst");
}
let mut f = fs::File::open(&path).await?;
let mut data = vec![];
f.read_to_end(&mut data).await?;
drop(f);
let data = if compressed {
DataBlock::Compressed(data)
} else {
DataBlock::Plain(data)
};
if data.verify(*hash).is_err() {
self.metrics.corruption_counter.add(1);
self.mutation_lock
.lock()
.await
.move_block_to_corrupted(hash, self)
.await?;
self.put_to_resync(hash, Duration::from_millis(0))?;
return Err(Error::CorruptData(*hash));
}
Ok(data)
}
/// Check if this node should have a block, but don't actually have it
async fn need_block(&self, hash: &Hash) -> Result<bool, Error> {
let BlockStatus { exists, needed } = self
.mutation_lock
.lock()
.await
.check_block_status(hash, self)
.await?;
Ok(needed.is_nonzero() && !exists)
}
/// Utility: gives the path of the directory in which a block should be found
fn block_dir(&self, hash: &Hash) -> PathBuf {
let mut path = self.data_dir.clone();
path.push(hex::encode(&hash.as_slice()[0..1]));
path.push(hex::encode(&hash.as_slice()[1..2]));
path
}
/// Utility: give the full path where a block should be found, minus extension if block is
/// compressed
fn block_path(&self, hash: &Hash) -> PathBuf {
let mut path = self.block_dir(hash);
path.push(hex::encode(hash.as_ref()));
path
}
/// Utility: check if block is stored compressed. Error if block is not stored
async fn is_block_compressed(&self, hash: &Hash) -> Result<bool, Error> {
let mut path = self.block_path(hash);
path.set_extension("zst");
if fs::metadata(&path).await.is_ok() {
return Ok(true);
}
path.set_extension("");
fs::metadata(&path).await.map(|_| false).map_err(Into::into)
}
// ---- Resync loop ----
// This part manages a queue of blocks that need to be
// "resynchronized", i.e. that need to have a check that
// they are at present if we need them, or that they are
// deleted once the garbage collection delay has passed.
//
// Here are some explanations on how the resync queue works.
// There are two Sled trees that are used to have information
// about the status of blocks that need to be resynchronized:
//
// - resync_queue: a tree that is ordered first by a timestamp
// (in milliseconds since Unix epoch) that is the time at which
// the resync must be done, and second by block hash.
// The key in this tree is just:
// concat(timestamp (8 bytes), hash (32 bytes))
// The value is the same 32-byte hash.
//
// - resync_errors: a tree that indicates for each block
// if the last resync resulted in an error, and if so,
// the following two informations (see the ErrorCounter struct):
// - how many consecutive resync errors for this block?
// - when was the last try?
// These two informations are used to implement an
// exponential backoff retry strategy.
// The key in this tree is the 32-byte hash of the block,
// and the value is the encoded ErrorCounter value.
//
// We need to have these two trees, because the resync queue
// is not just a queue of items to process, but a set of items
// that are waiting a specific delay until we can process them
// (the delay being necessary both internally for the exponential
// backoff strategy, and exposed as a parameter when adding items
// to the queue, e.g. to wait until the GC delay has passed).
// This is why we need one tree ordered by time, and one
// ordered by identifier of item to be processed (block hash).
//
// When the worker wants to process an item it takes from
// resync_queue, it checks in resync_errors that if there is an
// exponential back-off delay to await, it has passed before we
// process the item. If not, the item in the queue is skipped
// (but added back for later processing after the time of the
// delay).
//
// An alternative that would have seemed natural is to
// only add items to resync_queue with a processing time that is
// after the delay, but there are several issues with this:
// - This requires to synchronize updates to resync_queue and
// resync_errors (with the current model, there is only one thread,
// the worker thread, that accesses resync_errors,
// so no need to synchronize) by putting them both in a lock.
// This would mean that block_incref might need to take a lock
// before doing its thing, meaning it has much more chances of
// not completing successfully if something bad happens to Garage.
// Currently Garage is not able to recover from block_incref that
// doesn't complete successfully, because it is necessary to ensure
// the consistency between the state of the block manager and
// information in the BlockRef table.
// - If a resync fails, we put that block in the resync_errors table,
// and also add it back to resync_queue to be processed after
// the exponential back-off delay,
// but maybe the block is already scheduled to be resynced again
// at another time that is before the exponential back-off delay,
// and we have no way to check that easily. This means that
// in all cases, we need to check the resync_errors table
// in the resync loop at the time when a block is popped from
// the resync_queue.
// Overall, the current design is therefore simpler and more robust
// because it tolerates inconsistencies between the resync_queue
// and resync_errors table (items being scheduled in resync_queue
// for times that are earlier than the exponential back-off delay
// is a natural condition that is handled properly).
fn spawn_background_workers(self: Arc<Self>) {
// Launch a background workers for background resync loop processing
let background = self.system.background.clone();
let worker = ResyncWorker::new(self.clone());
tokio::spawn(async move {
tokio::time::sleep(Duration::from_secs(10)).await;
background.spawn_worker(worker);
});
// Launch a background worker for data store scrubs
let (scrub_tx, scrub_rx) = mpsc::channel(1);
self.tx_scrub_command.store(Some(Arc::new(scrub_tx)));
let scrub_worker = ScrubWorker::new(self.clone(), scrub_rx);
self.system.background.spawn_worker(scrub_worker);
}
pub(crate) fn put_to_resync(&self, hash: &Hash, delay: Duration) -> db::Result<()> {
let when = now_msec() + delay.as_millis() as u64;
self.put_to_resync_at(hash, when)
}
fn put_to_resync_at(&self, hash: &Hash, when: u64) -> db::Result<()> {
trace!("Put resync_queue: {} {:?}", when, hash);
let mut key = u64::to_be_bytes(when).to_vec();
key.extend(hash.as_ref());
self.resync_queue.insert(key, hash.as_ref())?;
self.resync_notify.notify_waiters();
Ok(())
}
async fn resync_iter(&self) -> Result<ResyncIterResult, db::Error> {
if let Some((time_bytes, hash_bytes)) = self.resync_queue.first()? {
let time_msec = u64::from_be_bytes(time_bytes[0..8].try_into().unwrap());
let now = now_msec();
if now >= time_msec {
let hash = Hash::try_from(&hash_bytes[..]).unwrap();
if let Some(ec) = self.resync_errors.get(hash.as_slice())? {
let ec = ErrorCounter::decode(&ec);
if now < ec.next_try() {
// if next retry after an error is not yet,
// don't do resync and return early, but still
// make sure the item is still in queue at expected time
self.put_to_resync_at(&hash, ec.next_try())?;
// ec.next_try() > now >= time_msec, so this remove
// is not removing the one we added just above
// (we want to do the remove after the insert to ensure
// that the item is not lost if we crash in-between)
self.resync_queue.remove(time_bytes)?;
return Ok(ResyncIterResult::BusyDidNothing);
}
}
let tracer = opentelemetry::global::tracer("garage");
let trace_id = gen_uuid();
let span = tracer
.span_builder("Resync block")
.with_trace_id(
opentelemetry::trace::TraceId::from_hex(&hex::encode(
&trace_id.as_slice()[..16],
))
.unwrap(),
)
.with_attributes(vec![KeyValue::new("block", format!("{:?}", hash))])
.start(&tracer);
let res = self
.resync_block(&hash)
.with_context(Context::current_with_span(span))
.bound_record_duration(&self.metrics.resync_duration)
.await;
self.metrics.resync_counter.add(1);
if let Err(e) = &res {
self.metrics.resync_error_counter.add(1);
warn!("Error when resyncing {:?}: {}", hash, e);
let err_counter = match self.resync_errors.get(hash.as_slice())? {
Some(ec) => ErrorCounter::decode(&ec).add1(now + 1),
None => ErrorCounter::new(now + 1),
};
self.resync_errors
.insert(hash.as_slice(), err_counter.encode())?;
self.put_to_resync_at(&hash, err_counter.next_try())?;
// err_counter.next_try() >= now + 1 > now,
// the entry we remove from the queue is not
// the entry we inserted with put_to_resync_at
self.resync_queue.remove(time_bytes)?;
} else {
self.resync_errors.remove(hash.as_slice())?;
self.resync_queue.remove(time_bytes)?;
}
Ok(ResyncIterResult::BusyDidSomething)
} else {
Ok(ResyncIterResult::IdleFor(Duration::from_millis(
time_msec - now,
)))
}
} else {
// Here we wait either for a notification that an item has been
// added to the queue, or for a constant delay of 10 secs to expire.
// The delay avoids a race condition where the notification happens
// between the time we checked the queue and the first poll
// to resync_notify.notified(): if that happens, we'll just loop
// back 10 seconds later, which is fine.
Ok(ResyncIterResult::IdleFor(Duration::from_secs(10)))
}
}
async fn resync_block(&self, hash: &Hash) -> Result<(), Error> {
let BlockStatus { exists, needed } = self
.mutation_lock
.lock()
.await
.check_block_status(hash, self)
.await?;
if exists != needed.is_needed() || exists != needed.is_nonzero() {
debug!(
"Resync block {:?}: exists {}, nonzero rc {}, deletable {}",
hash,
exists,
needed.is_nonzero(),
needed.is_deletable(),
);
}
if exists && needed.is_deletable() {
info!("Resync block {:?}: offloading and deleting", hash);
let mut who = self.replication.write_nodes(hash);
if who.len() < self.replication.write_quorum() {
return Err(Error::Message("Not trying to offload block because we don't have a quorum of nodes to write to".to_string()));
}
who.retain(|id| *id != self.system.id);
let msg = Arc::new(BlockRpc::NeedBlockQuery(*hash));
let who_needs_fut = who.iter().map(|to| {
self.system.rpc.call_arc(
&self.endpoint,
*to,
msg.clone(),
RequestStrategy::with_priority(PRIO_BACKGROUND)
.with_timeout(NEED_BLOCK_QUERY_TIMEOUT),
)
});
let who_needs_resps = join_all(who_needs_fut).await;
let mut need_nodes = vec![];
for (node, needed) in who.iter().zip(who_needs_resps.into_iter()) {
match needed.err_context("NeedBlockQuery RPC")? {
BlockRpc::NeedBlockReply(needed) => {
if needed {
need_nodes.push(*node);
}
}
m => {
return Err(Error::unexpected_rpc_message(m));
}
}
}
if !need_nodes.is_empty() {
trace!(
"Block {:?} needed by {} nodes, sending",
hash,
need_nodes.len()
);
for node in need_nodes.iter() {
self.metrics
.resync_send_counter
.add(1, &[KeyValue::new("to", format!("{:?}", node))]);
}
let put_block_message = self.read_block(hash).await?;
self.system
.rpc
.try_call_many(
&self.endpoint,
&need_nodes[..],
put_block_message,
RequestStrategy::with_priority(PRIO_BACKGROUND)
.with_quorum(need_nodes.len())
.with_timeout(BLOCK_RW_TIMEOUT),
)
.await
.err_context("PutBlock RPC")?;
}
info!(
"Deleting unneeded block {:?}, offload finished ({} / {})",
hash,
need_nodes.len(),
who.len()
);
self.mutation_lock
.lock()
.await
.delete_if_unneeded(hash, self)
.await?;
self.rc.clear_deleted_block_rc(hash)?;
}
if needed.is_nonzero() && !exists {
info!(
"Resync block {:?}: fetching absent but needed block (refcount > 0)",
hash
);
let block_data = self.rpc_get_raw_block(hash).await?;
self.metrics.resync_recv_counter.add(1);
self.write_block(hash, &block_data).await?;
}
Ok(())
}
}
#[async_trait]
impl EndpointHandler<BlockRpc> for BlockManager {
async fn handle(
self: &Arc<Self>,
message: &BlockRpc,
_from: NodeID,
) -> Result<BlockRpc, Error> {
match message {
BlockRpc::PutBlock { hash, data } => self.write_block(hash, data).await,
BlockRpc::GetBlock(h) => self.read_block(h).await,
BlockRpc::NeedBlockQuery(h) => self.need_block(h).await.map(BlockRpc::NeedBlockReply),
m => Err(Error::unexpected_rpc_message(m)),
}
}
}
struct ResyncWorker {
manager: Arc<BlockManager>,
tranquilizer: Tranquilizer,
next_delay: Duration,
}
impl ResyncWorker {
fn new(manager: Arc<BlockManager>) -> Self {
Self {
manager,
tranquilizer: Tranquilizer::new(30),
next_delay: Duration::from_secs(10),
}
}
}
#[async_trait]
impl Worker for ResyncWorker {
fn name(&self) -> String {
"Block resync worker".into()
}
fn info(&self) -> Option<String> {
let mut ret = vec![];
let qlen = self.manager.resync_queue_len().unwrap_or(0);
let elen = self.manager.resync_errors_len().unwrap_or(0);
if qlen > 0 {
ret.push(format!("{} blocks in queue", qlen));
}
if elen > 0 {
ret.push(format!("{} blocks in error state", elen));
}
if !ret.is_empty() {
Some(ret.join(", "))
} else {
None
}
}
async fn work(
&mut self,
_must_exit: &mut watch::Receiver<bool>,
) -> Result<WorkerStatus, Error> {
self.tranquilizer.reset();
match self.manager.resync_iter().await {
Ok(ResyncIterResult::BusyDidSomething) => Ok(self
.tranquilizer
.tranquilize_worker(self.manager.background_tranquility)),
Ok(ResyncIterResult::BusyDidNothing) => Ok(WorkerStatus::Busy),
Ok(ResyncIterResult::IdleFor(delay)) => {
self.next_delay = delay;
Ok(WorkerStatus::Idle)
}
Err(e) => {
// The errors that we have here are only Sled errors
// We don't really know how to handle them so just ¯\_(ツ)_/¯
// (there is kind of an assumption that Sled won't error on us,
// if it does there is not much we can do -- TODO should we just panic?)
// Here we just give the error to the worker manager,
// it will print it to the logs and increment a counter
Err(e.into())
}
}
}
async fn wait_for_work(&mut self, _must_exit: &watch::Receiver<bool>) -> WorkerStatus {
select! {
_ = tokio::time::sleep(self.next_delay) => (),
_ = self.manager.resync_notify.notified() => (),
};
WorkerStatus::Busy
}
}
struct BlockStatus {
exists: bool,
needed: RcEntry,
}
impl BlockManagerLocked {
async fn check_block_status(
&self,
hash: &Hash,
mgr: &BlockManager,
) -> Result<BlockStatus, Error> {
let exists = mgr.is_block_compressed(hash).await.is_ok();
let needed = mgr.rc.get_block_rc(hash)?;
Ok(BlockStatus { exists, needed })
}
async fn write_block(
&self,
hash: &Hash,
data: &DataBlock,
mgr: &BlockManager,
) -> Result<BlockRpc, Error> {
let compressed = data.is_compressed();
let data = data.inner_buffer();
let mut path = mgr.block_dir(hash);
let directory = path.clone();
path.push(hex::encode(hash));
fs::create_dir_all(&directory).await?;
let to_delete = match (mgr.is_block_compressed(hash).await, compressed) {
(Ok(true), _) => return Ok(BlockRpc::Ok),
(Ok(false), false) => return Ok(BlockRpc::Ok),
(Ok(false), true) => {
let path_to_delete = path.clone();
path.set_extension("zst");
Some(path_to_delete)
}
(Err(_), compressed) => {
if compressed {
path.set_extension("zst");
}
None
}
};
let mut path2 = path.clone();
path2.set_extension("tmp");
let mut f = fs::File::create(&path2).await?;
f.write_all(data).await?;
f.sync_all().await?;
drop(f);
fs::rename(path2, path).await?;
if let Some(to_delete) = to_delete {
fs::remove_file(to_delete).await?;
}
// We want to ensure that when this function returns, data is properly persisted
// to disk. The first step is the sync_all above that does an fsync on the data file.
// Now, we do an fsync on the containing directory, to ensure that the rename
// is persisted properly. See:
// http://thedjbway.b0llix.net/qmail/syncdir.html
let dir = fs::OpenOptions::new()
.read(true)
.mode(0)
.open(directory)
.await?;
dir.sync_all().await?;
drop(dir);
Ok(BlockRpc::Ok)
}
async fn move_block_to_corrupted(&self, hash: &Hash, mgr: &BlockManager) -> Result<(), Error> {
warn!(
"Block {:?} is corrupted. Renaming to .corrupted and resyncing.",
hash
);
let mut path = mgr.block_path(hash);
let mut path2 = path.clone();
if mgr.is_block_compressed(hash).await? {
path.set_extension("zst");
path2.set_extension("zst.corrupted");
} else {
path2.set_extension("corrupted");
}
fs::rename(path, path2).await?;
Ok(())
}
async fn delete_if_unneeded(&self, hash: &Hash, mgr: &BlockManager) -> Result<(), Error> {
let BlockStatus { exists, needed } = self.check_block_status(hash, mgr).await?;
if exists && needed.is_deletable() {
let mut path = mgr.block_path(hash);
if mgr.is_block_compressed(hash).await? {
path.set_extension("zst");
}
fs::remove_file(path).await?;
mgr.metrics.delete_counter.add(1);
}
Ok(())
}
}
/// Counts the number of errors when resyncing a block,
/// and the time of the last try.
/// Used to implement exponential backoff.
#[derive(Clone, Copy, Debug)]
struct ErrorCounter {
errors: u64,
last_try: u64,
}
impl ErrorCounter {
fn new(now: u64) -> Self {
Self {
errors: 1,
last_try: now,
}
}
fn decode(data: &[u8]) -> Self {
Self {
errors: u64::from_be_bytes(data[0..8].try_into().unwrap()),
last_try: u64::from_be_bytes(data[8..16].try_into().unwrap()),
}
}
fn encode(&self) -> Vec<u8> {
[
u64::to_be_bytes(self.errors),
u64::to_be_bytes(self.last_try),
]
.concat()
}
fn add1(self, now: u64) -> Self {
Self {
errors: self.errors + 1,
last_try: now,
}
}
fn delay_msec(&self) -> u64 {
(RESYNC_RETRY_DELAY.as_millis() as u64)
<< std::cmp::min(self.errors - 1, RESYNC_RETRY_DELAY_MAX_BACKOFF_POWER)
}
fn next_try(&self) -> u64 {
self.last_try + self.delay_msec()
}
}
|