aboutsummaryrefslogtreecommitdiff
path: root/doc/talks/2023-09-20-ocp/talk.tex
diff options
context:
space:
mode:
authorAlex Auvolat <alex@adnab.me>2023-09-19 14:02:07 +0200
committerAlex Auvolat <alex@adnab.me>2023-09-19 14:02:07 +0200
commit95ae09917b6f128773325ba2c3575c760bf56b81 (patch)
tree57ca437e68f073bddcea6877093caac21769b1f7 /doc/talks/2023-09-20-ocp/talk.tex
parenta7ababb5dbb523f457171d4f38c79417fe036f2d (diff)
downloadgarage-prez-ocp.tar.gz
garage-prez-ocp.zip
add ocp2023 presentationprez-ocp
Diffstat (limited to 'doc/talks/2023-09-20-ocp/talk.tex')
-rw-r--r--doc/talks/2023-09-20-ocp/talk.tex1008
1 files changed, 1008 insertions, 0 deletions
diff --git a/doc/talks/2023-09-20-ocp/talk.tex b/doc/talks/2023-09-20-ocp/talk.tex
new file mode 100644
index 00000000..21ce54b0
--- /dev/null
+++ b/doc/talks/2023-09-20-ocp/talk.tex
@@ -0,0 +1,1008 @@
+\nonstopmode
+\documentclass[aspectratio=169]{beamer}
+\usepackage[utf8]{inputenc}
+% \usepackage[frenchb]{babel}
+\usepackage{amsmath}
+\usepackage{mathtools}
+\usepackage{breqn}
+\usepackage{multirow}
+\usetheme{boxes}
+\usepackage{graphicx}
+\usepackage{import}
+\usepackage{adjustbox}
+%\useoutertheme[footline=authortitle,subsection=false]{miniframes}
+%\useoutertheme[footline=authorinstitute,subsection=false]{miniframes}
+\useoutertheme{infolines}
+\setbeamertemplate{headline}{}
+
+\beamertemplatenavigationsymbolsempty
+
+\definecolor{TitleOrange}{RGB}{255,137,0}
+\setbeamercolor{title}{fg=TitleOrange}
+\setbeamercolor{frametitle}{fg=TitleOrange}
+
+\definecolor{ListOrange}{RGB}{255,145,5}
+\setbeamertemplate{itemize item}{\color{ListOrange}$\blacktriangleright$}
+
+\definecolor{verygrey}{RGB}{70,70,70}
+\setbeamercolor{normal text}{fg=verygrey}
+
+
+\usepackage{tabu}
+\usepackage{multicol}
+\usepackage{vwcol}
+\usepackage{stmaryrd}
+\usepackage{graphicx}
+
+\usepackage[normalem]{ulem}
+
+\AtBeginSection[]{
+ \begin{frame}
+ \vfill
+ \centering
+ \begin{beamercolorbox}[sep=8pt,center,shadow=true,rounded=true]{title}
+ \usebeamerfont{title}\insertsectionhead\par%
+ \end{beamercolorbox}
+ \vfill
+ \end{frame}
+}
+
+\title{Garage}
+\subtitle{a lightweight and robust geo-distributed data storage system}
+\author{Alex Auvolat, Deuxfleurs}
+\date{OCamlPro, 2023-09-20}
+
+\begin{document}
+
+\begin{frame}
+ \centering
+ \includegraphics[width=.3\linewidth]{../../sticker/Garage.png}
+ \vspace{1em}
+
+ {\large\bf Alex Auvolat, Deuxfleurs Association}
+ \vspace{1em}
+
+ \url{https://garagehq.deuxfleurs.fr/}
+
+ Matrix channel: \texttt{\#garage:deuxfleurs.fr}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Who I am}
+ \begin{columns}[t]
+ \begin{column}{.2\textwidth}
+ \centering
+ \adjincludegraphics[width=.4\linewidth, valign=t]{assets/alex.jpg}
+ \end{column}
+ \begin{column}{.6\textwidth}
+ \textbf{Alex Auvolat}\\
+ PhD; co-founder of Deuxfleurs
+ \end{column}
+ \begin{column}{.2\textwidth}
+ ~
+ \end{column}
+ \end{columns}
+ \vspace{2em}
+
+ \begin{columns}[t]
+ \begin{column}{.2\textwidth}
+ \centering
+ \adjincludegraphics[width=.5\linewidth, valign=t]{assets/deuxfleurs.pdf}
+ \end{column}
+ \begin{column}{.6\textwidth}
+ \textbf{Deuxfleurs}\\
+ A non-profit self-hosting collective,\\
+ member of the CHATONS network
+ \end{column}
+ \begin{column}{.2\textwidth}
+ \centering
+ \adjincludegraphics[width=.7\linewidth, valign=t]{assets/logo_chatons.png}
+ \end{column}
+ \end{columns}
+
+\end{frame}
+
+\begin{frame}
+ \frametitle{Our objective at Deuxfleurs}
+
+ \begin{center}
+ \textbf{Promote self-hosting and small-scale hosting\\
+ as an alternative to large cloud providers}
+ \end{center}
+ \vspace{2em}
+ \visible<2->{
+ Why is it hard?
+ }
+ \visible<3->{
+ \vspace{2em}
+ \begin{center}
+ \textbf{\underline{Resilience}}\\
+ {\footnotesize (we want good uptime/availability with low supervision)}
+ \end{center}
+ }
+\end{frame}
+
+\begin{frame}
+ \frametitle{How to make a \underline{stable} system}
+
+ Enterprise-grade systems typically employ:
+ \vspace{1em}
+ \begin{itemize}
+ \item RAID
+ \item Redundant power grid + UPS
+ \item Redundant Internet connections
+ \item Low-latency links
+ \item ...
+ \end{itemize}
+ \vspace{1em}
+ $\to$ it's costly and only worth it at DC scale
+\end{frame}
+
+\begin{frame}
+ \frametitle{How to make a \underline{resilient} system}
+
+ \only<1,4-5>{
+ Instead, we use:
+ \vspace{1em}
+ \begin{itemize}
+ \item \textcolor<2->{gray}{Commodity hardware (e.g. old desktop PCs)}
+ \vspace{.5em}
+ \item<4-> \textcolor<5->{gray}{Commodity Internet (e.g. FTTB, FTTH) and power grid}
+ \vspace{.5em}
+ \item<5-> \textcolor<6->{gray}{\textbf{Geographical redundancy} (multi-site replication)}
+ \end{itemize}
+ }
+ \only<2>{
+ \begin{center}
+ \includegraphics[width=.8\linewidth]{assets/neptune.jpg}
+ \end{center}
+ }
+ \only<3>{
+ \begin{center}
+ \includegraphics[width=.8\linewidth]{assets/atuin.jpg}
+ \end{center}
+ }
+ \only<6>{
+ \begin{center}
+ \includegraphics[width=.8\linewidth]{assets/inframap_jdll2023.pdf}
+ \end{center}
+ }
+\end{frame}
+
+\begin{frame}
+ \frametitle{How to make this happen}
+ \begin{center}
+ \only<1>{\includegraphics[width=.8\linewidth]{assets/slide1.png}}%
+ \only<2>{\includegraphics[width=.8\linewidth]{assets/slide2.png}}%
+ \only<3>{\includegraphics[width=.8\linewidth]{assets/slide3.png}}%
+ \end{center}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Distributed file systems are slow}
+ File systems are complex, for example:
+ \vspace{1em}
+ \begin{itemize}
+ \item Concurrent modification by several processes
+ \vspace{1em}
+ \item Folder hierarchies
+ \vspace{1em}
+ \item Other requirements of the POSIX spec (e.g.~locks)
+ \end{itemize}
+ \vspace{1em}
+ Coordination in a distributed system is costly
+
+ \vspace{1em}
+ Costs explode with commodity hardware / Internet connections\\
+ {\small (we experienced this!)}
+\end{frame}
+
+\begin{frame}
+ \frametitle{A simpler solution: object storage}
+ Only two operations:
+ \vspace{1em}
+ \begin{itemize}
+ \item Put an object at a key
+ \vspace{1em}
+ \item Retrieve an object from its key
+ \end{itemize}
+ \vspace{1em}
+ {\footnotesize (and a few others)}
+
+ \vspace{1em}
+ Sufficient for many applications!
+\end{frame}
+
+\begin{frame}
+ \frametitle{A simpler solution: object storage}
+ \begin{center}
+ \includegraphics[height=6em]{../2020-12-02_wide-team/img/Amazon-S3.jpg}
+ \hspace{3em}
+ \includegraphics[height=5em]{assets/minio.png}
+ \hspace{3em}
+ \includegraphics[height=6em]{../../logo/garage_hires_crop.png}
+ \end{center}
+ \vspace{1em}
+ S3: a de-facto standard, many compatible applications
+
+ \vspace{1em}
+
+ MinIO is self-hostable but not suited for geo-distributed deployments
+
+ \vspace{1em}
+
+ \textbf{Garage is a self-hosted drop-in replacement for the Amazon S3 object store}
+\end{frame}
+
+
+\begin{frame}
+ \frametitle{The data model of object storage}
+ Object storage is basically a key-value store:
+ \vspace{1em}
+
+ \begin{center}
+ \begin{tabular}{|l|p{8cm}|}
+ \hline
+ \textbf{Key: file path + name} & \textbf{Value: file data + metadata} \\
+ \hline
+ \hline
+ \texttt{index.html} &
+ \texttt{Content-Type: text/html; charset=utf-8} \newline
+ \texttt{Content-Length: 24929} \newline
+ \texttt{<binary blob>} \\
+ \hline
+ \texttt{img/logo.svg} &
+ \texttt{Content-Type: text/svg+xml} \newline
+ \texttt{Content-Length: 13429} \newline
+ \texttt{<binary blob>} \\
+ \hline
+ \texttt{download/index.html} &
+ \texttt{Content-Type: text/html; charset=utf-8} \newline
+ \texttt{Content-Length: 26563} \newline
+ \texttt{<binary blob>} \\
+ \hline
+ \end{tabular}
+ \end{center}
+
+\end{frame}
+
+
+\begin{frame}
+ \frametitle{Two big problems}
+ \begin{enumerate}
+ \item \textbf{How to place data on different nodes?}\\
+ \vspace{1em}
+ \underline{Constraints:} heterogeneous hardware\\
+ \underline{Objective:} $n$ copies of everything, maximize usable capacity, maximize resilience\\
+ \vspace{1em}
+ $\to$ the Dynamo model + optimization algorithms
+ \vspace{2em}
+ \item<2-> \textbf{How to guarantee consistency?}\\
+ \vspace{1em}
+ \underline{Constraints:} slow network (geographical distance), node unavailability/crashes\\
+ \underline{Objective:} maximize availability, read-after-write guarantee\\
+ \vspace{1em}
+ $\to$ CRDTs, monotonicity, read and write quorums
+ \end{enumerate}
+\end{frame}
+
+\section{Problem 1: placing data}
+
+\begin{frame}
+ \frametitle{Key-value stores, upgraded: the Dynamo model}
+ \textbf{Two keys:}
+ \begin{itemize}
+ \item Partition key: used to divide data into partitions {\small (a.k.a.~shards)}
+ \item Sort key: used to identify items inside a partition
+ \end{itemize}
+
+ \vspace{1em}
+
+ \begin{center}
+ \begin{tabular}{|l|l|p{3cm}|}
+ \hline
+ \textbf{Partition key: bucket} & \textbf{Sort key: filename} & \textbf{Value} \\
+ \hline
+ \hline
+ \texttt{website} & \texttt{index.html} & (file data) \\
+ \hline
+ \texttt{website} & \texttt{img/logo.svg} & (file data) \\
+ \hline
+ \texttt{website} & \texttt{download/index.html} & (file data) \\
+ \hline
+ \hline
+ \texttt{backup} & \texttt{borg/index.2822} & (file data) \\
+ \hline
+ \texttt{backup} & \texttt{borg/data/2/2329} & (file data) \\
+ \hline
+ \texttt{backup} & \texttt{borg/data/2/2680} & (file data) \\
+ \hline
+ \hline
+ \texttt{private} & \texttt{qq3a2nbe1qjq0ebbvo6ocsp6co} & (file data) \\
+ \hline
+ \end{tabular}
+ \end{center}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Key-value stores, upgraded: the Dynamo model}
+ \begin{itemize}
+ \item Data with different partition keys is stored independently,\\
+ on a different set of nodes\\
+ \vspace{.5em}
+ $\to$ no easy way to list all partition keys\\
+ $\to$ no cross-shard transactions\\
+ \vspace{2em}
+ \item Placing data: hash the partition key, select nodes accordingly\\
+ \vspace{.5em}
+ $\to$ distributed hash table (DHT)
+ \vspace{2em}
+ \item For a given value of the partition key, items can be listed using their sort keys
+ \end{itemize}
+\end{frame}
+
+\begin{frame}
+ \frametitle{How to spread files over different cluster nodes?}
+ \textbf{Consistent hashing (Dynamo):}
+ \vspace{1em}
+
+ \begin{center}
+ \only<1>{\includegraphics[width=.40\columnwidth]{assets/consistent_hashing_1.pdf}}%
+ \only<2>{\includegraphics[width=.40\columnwidth]{assets/consistent_hashing_2.pdf}}%
+ \only<3>{\includegraphics[width=.40\columnwidth]{assets/consistent_hashing_3.pdf}}%
+ \only<4>{\includegraphics[width=.40\columnwidth]{assets/consistent_hashing_4.pdf}}%
+ \end{center}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Constraint: location-awareness}
+ \begin{center}
+ \includegraphics[width=\linewidth]{assets/location-aware.png}
+ \end{center}
+ \vspace{2em}
+ Garage replicates data on different zones when possible
+\end{frame}
+
+\begin{frame}
+ \frametitle{Constraint: location-awareness}
+ \begin{center}
+ \includegraphics[width=.8\linewidth]{assets/map.png}
+ \end{center}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Issues with consistent hashing}
+ \begin{itemize}
+ \item Consistent hashing doesn't dispatch data based on geographical location of nodes
+ \vspace{1em}
+ \item<2-> Geographically aware adaptation, try 1:\\
+ data quantities not well balanced between nodes
+ \vspace{1em}
+ \item<3-> Geographically aware adaptation, try 2:\\
+ too many reshuffles when adding/removing nodes
+ \end{itemize}
+\end{frame}
+
+\begin{frame}
+ \frametitle{How to spread files over different cluster nodes?}
+ \textbf{Garage's method: build an index table}
+ \vspace{1em}
+
+ Realization: we can actually precompute an optimal solution
+ \vspace{1em}
+
+ \visible<2->{
+ \begin{center}
+ \begin{tabular}{|l|l|l|l|}
+ \hline
+ \textbf{Partition} & \textbf{Node 1} & \textbf{Node 2} & \textbf{Node 3} \\
+ \hline
+ \hline
+ Partition 0 & Io (jupiter) & Drosera (atuin) & Courgette (neptune) \\
+ \hline
+ Partition 1 & Datura (atuin) & Courgette (neptune) & Io (jupiter) \\
+ \hline
+ Partition 2 & Io(jupiter) & Celeri (neptune) & Drosera (atuin) \\
+ \hline
+ \hspace{1em}$\vdots$ & \hspace{1em}$\vdots$ & \hspace{1em}$\vdots$ & \hspace{1em}$\vdots$ \\
+ \hline
+ Partition 255 & Concombre (neptune) & Io (jupiter) & Drosera (atuin) \\
+ \hline
+ \end{tabular}
+ \end{center}
+ }
+ \vspace{1em}
+ \visible<3->{
+ The index table is built centrally using an optimal algorithm,\\
+ then propagated to all nodes
+ }
+\end{frame}
+
+\begin{frame}
+ \frametitle{The relationship between \emph{partition} and \emph{partition key}}
+ \begin{center}
+ \begin{tabular}{|l|l|l|l|}
+ \hline
+ \textbf{Partition key} & \textbf{Partition} & \textbf{Sort key} & \textbf{Value} \\
+ \hline
+ \hline
+ \texttt{website} & Partition 12 & \texttt{index.html} & (file data) \\
+ \hline
+ \texttt{website} & Partition 12 & \texttt{img/logo.svg} & (file data) \\
+ \hline
+ \texttt{website} & Partition 12 &\texttt{download/index.html} & (file data) \\
+ \hline
+ \hline
+ \texttt{backup} & Partition 42 & \texttt{borg/index.2822} & (file data) \\
+ \hline
+ \texttt{backup} & Partition 42 & \texttt{borg/data/2/2329} & (file data) \\
+ \hline
+ \texttt{backup} & Partition 42 & \texttt{borg/data/2/2680} & (file data) \\
+ \hline
+ \hline
+ \texttt{private} & Partition 42 & \texttt{qq3a2nbe1qjq0ebbvo6ocsp6co} & (file data) \\
+ \hline
+ \end{tabular}
+ \end{center}
+ \vspace{1em}
+ \textbf{To read or write an item:} hash partition key
+ \\ \hspace{5cm} $\to$ determine partition number (first 8 bits)
+ \\ \hspace{5cm} $\to$ find associated nodes
+\end{frame}
+
+\begin{frame}
+ \frametitle{Garage's internal data structures}
+ \centering
+ \includegraphics[width=.75\columnwidth]{assets/garage_tables.pdf}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Storing and retrieving files}
+ \begin{center}
+ \only<1>{\includegraphics[width=.45\linewidth]{assets/garage2a.drawio.pdf}}%
+ \only<2>{\includegraphics[width=.45\linewidth]{assets/garage2b.drawio.pdf}}%
+ \end{center}
+\end{frame}
+
+\section{Problem 2: ensuring consistency}
+
+\begin{frame}
+ \frametitle{Consensus vs weak consistency}
+
+ \hspace{1em}
+ \begin{minipage}{7cm}
+ \textbf{Consensus-based systems:}
+ \vspace{1em}
+ \begin{itemize}
+ \item \textbf{Leader-based:} a leader is elected to coordinate
+ all reads and writes
+ \vspace{1em}
+ \item \textbf{Linearizability} of all operations\\
+ (strongest consistency guarantee)
+ \vspace{1em}
+ \item Any sequential specification can be implemented as a \textbf{replicated state machine}
+ \vspace{1em}
+ \item \textbf{Costly}, the leader is a bottleneck;
+ leader elections on failure take time
+ \end{itemize}
+ \end{minipage}
+ \hfill
+ \begin{minipage}{7cm} \visible<2->{
+ \textbf{Weakly consistent systems:}
+ \vspace{1em}
+ \begin{itemize}
+ \item \textbf{Nodes are equivalent}, any node
+ can originate a read or write operation
+ \vspace{1em}
+ \item \textbf{Read-after-write consistency} with quorums,
+ eventual consistency without
+ \vspace{1em}
+ \item \textbf{Operations have to commute}, i.e.~we
+ can only implement CRDTs
+ \vspace{1em}
+ \item \textbf{Fast}, no single bottleneck;\\
+ works the same with offline nodes
+ \end{itemize}
+ } \end{minipage}
+ \hspace{1em}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Consensus vs weak consistency}
+ \begin{center}
+ \textbf{From a theoretical point of view:}\\
+
+ \end{center}
+ \vspace{2em}
+
+ \hspace{1em}
+ \begin{minipage}{6.5cm}
+ \underline{Consensus-based systems:}
+
+ \vspace{1em}
+
+ Require \textbf{additional assumptions} such as a fault detector or a strong RNG\\
+ (FLP impossibility theorem)
+ \end{minipage}
+ \hfill
+ \begin{minipage}{6.5cm}
+ \underline{Weakly consistent systems:}
+
+ \vspace{1em}
+
+ Can be implemented in \textbf{any\\asynchronous message passing\\distributed system} with node crashes
+ \end{minipage}
+ \hspace{1em}
+
+ \vspace{3em}
+ \begin{center}
+ They represent \textbf{different classes of computational capability}\\
+ \end{center}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Consensus vs weak consistency}
+ \begin{center}
+ \textbf{The same objects cannot be implemented in both models.}
+ \end{center}
+ \vspace{2em}
+
+ \hspace{1em}
+ \begin{minipage}{6.5cm}
+ \underline{Consensus-based systems:}
+
+ \vspace{1em}
+
+ \textbf{Any sequential specification}\\~
+
+ \vspace{1em}
+ \textbf{Easier to program for}: just write your program as if it were sequential on a single machine
+
+ \end{minipage}
+ \hfill
+ \begin{minipage}{6.5cm}
+ \underline{Weakly consistent systems:}
+
+ \vspace{1em}
+
+ \textbf{Only CRDTs}\\(conflict-free replicated data types)
+
+ \vspace{1em}
+ Part of the complexity is \textbf{reported to the consumer of the API}\\~
+ \end{minipage}
+ \hspace{1em}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Understanding the power of consensus}
+ \textbf{Consensus:} an API with a single operation, $propose(x)$
+ \begin{enumerate}
+ \item nodes all call $propose(x)$ with their proposed value;
+ \item nodes all receive the same value as a return value, which is one of the proposed values
+ \end{enumerate}
+ \vspace{1em}
+
+ \visible<2->{
+ \textbf{Equivalent to} a distributed algorithm that gives a total order on all requests
+ }
+ \vspace{1em}
+
+ \visible<3->{
+ \textbf{Implemented by} this simple replicated state machine:
+ \vspace{.5em}
+ \begin{figure}
+ \centering
+ \def\svgwidth{.5\textwidth}
+ \large
+ \import{assets/}{consensus.pdf_tex}
+ \end{figure}
+ \vspace{1em}
+ }
+\end{frame}
+
+\begin{frame}
+ \frametitle{Can my object be implemented without consensus?}
+ \underline{Given the specification of an API:}
+ \vspace{2em}
+ \begin{itemize}
+ \item \textbf{Using this API, we can implement the consensus object} (the $propose$ function)\\
+ $\to$ the API is equivalent to consensus/total ordering of messages\\
+ $\to$ the API cannot be implemented in a weakly consistent system
+ \vspace{2em}
+ \item<2-> \textbf{This API can be implemented using only weak primitives}\\
+ (e.g. in the asynchronous message passing model with no further assumption)\\
+ $\to$ the API is strictly weaker than consensus\\
+ $\to$ we can implement it in Garage!
+ \end{itemize}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Why avoid consensus?}
+ Consensus can be implemented reasonably well in practice, so why avoid it?
+ \vspace{2em}
+ \begin{itemize}
+ \item \textbf{Software complexity:} RAFT and PAXOS are complex beasts;\\
+ harder to prove, harder to reason about
+ \vspace{1.5em}
+ \item \textbf{Performance issues:}
+ \vspace{1em}
+ \begin{itemize}
+ \item Theoretical requirements (RNG, failure detector) translate into \textbf{practical costs}
+ \vspace{1em}
+ \item The leader is a \textbf{bottleneck} for all requests;\\
+ even in leaderless approaches, \textbf{all nodes must process all operations in order}
+ \vspace{1em}
+ \item Particularly \textbf{sensitive to higher latency} between nodes
+ \end{itemize}
+ \end{itemize}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Performance gains in practice}
+ \begin{center}
+ \includegraphics[width=.8\linewidth]{assets/endpoint-latency-dc.png}
+ \end{center}
+\end{frame}
+
+\begin{frame}
+ \frametitle{What can we implement without consensus?}
+ \begin{itemize}
+ \item Any \textbf{conflict-free replicated data type} (CRDT)
+ \vspace{1em}
+ \item<2-> Non-transactional key-value stores such as S3 are equivalent to a simple CRDT:\\
+ a map of \textbf{last-writer-wins registers} (each key is its own CRDT)
+ \vspace{1em}
+ \item<3-> \textbf{Read-after-write consistency} can be implemented
+ using quorums on read and write operations
+ \vspace{1em}
+ \item<4-> \textbf{Monotonicity of reads} can be implemented with repair-on-read\\
+ (makes reads more costly, not implemented in Garage)
+ \end{itemize}
+\end{frame}
+
+\begin{frame}
+ \frametitle{CRDTs and quorums: read-after-write consistency}
+ \begin{figure}
+ \centering
+ \def\svgwidth{.8\textwidth}
+ \only<1>{\import{assets/}{lattice1.pdf_tex}}%
+ \only<2>{\import{assets/}{lattice2.pdf_tex}}%
+ \only<3>{\import{assets/}{lattice3.pdf_tex}}%
+ \only<4>{\import{assets/}{lattice4.pdf_tex}}%
+ \only<5>{\import{assets/}{lattice5.pdf_tex}}%
+ \only<6>{\import{assets/}{lattice6.pdf_tex}}%
+ \only<7>{\import{assets/}{lattice7.pdf_tex}}%
+ \only<8>{\import{assets/}{lattice8.pdf_tex}}%
+ \end{figure}
+\end{frame}
+
+\begin{frame}
+ \frametitle{CRDTs and quorums: read-after-write consistency}
+ \textbf{Property:} If node $A$ did an operation $write(x)$ and received an OK response,\\
+ \hspace{2cm} and node $B$ starts an operation $read()$ after $A$ received OK,\\
+ \hspace{2cm} then $B$ will read a value $x' \sqsupseteq x$.
+
+ \vspace{1em}
+
+ \hspace{1em}
+ \begin{minipage}{6.8cm}
+ \textbf{Algorithm $write(x)$:}
+ \begin{enumerate}
+ \item Broadcast $write(x)$ to all nodes
+ \item Wait for $k > n/2$ nodes to reply OK
+ \item Return OK
+ \end{enumerate}
+ \end{minipage}
+ \hfill
+ \begin{minipage}{6.8cm}
+ \vspace{1em}
+ \textbf{Algorithm $read()$:}
+ \begin{enumerate}
+ \item Broadcast $read()$ to all nodes
+ \item Wait for $k > n/2$ nodes to reply\\
+ with values $x_1, \dots, x_k$
+ \item Return $x_1 \sqcup \dots \sqcup x_k$
+ \end{enumerate}
+ \end{minipage}
+ \hspace{1em}
+
+ \vspace{2em}
+ \textbf{Why does it work?} There is at least one node at the intersection between the two sets of nodes that replied to each request, that ``saw'' $x$ before the $read()$ started ($x_i \sqsupseteq x$).
+\end{frame}
+
+\begin{frame}
+ \frametitle{CRDTs and quorums: monotonic-reads consistency}
+ \begin{figure}
+ \centering
+ \def\svgwidth{.8\textwidth}
+ \only<1>{\import{assets/}{latticeB_1.pdf_tex}}%
+ \only<2>{\import{assets/}{latticeB_2.pdf_tex}}%
+ \only<3>{\import{assets/}{latticeB_3.pdf_tex}}%
+ \only<4>{\import{assets/}{latticeB_4.pdf_tex}}%
+ \only<5>{\import{assets/}{latticeB_5.pdf_tex}}%
+ \only<6>{\import{assets/}{latticeB_6.pdf_tex}}%
+ \only<7>{\import{assets/}{latticeB_7.pdf_tex}}%
+ \only<8>{\import{assets/}{latticeB_8.pdf_tex}}%
+ \only<9>{\import{assets/}{latticeB_9.pdf_tex}}%
+ \only<10>{\import{assets/}{latticeB_10.pdf_tex}}%
+ \end{figure}
+\end{frame}
+
+\begin{frame}
+ \frametitle{CRDTs and quorums: monotonic-reads consistency}
+ \textbf{Property:} If node $A$ did an operation $read()$ and received $x$ as a response,\\
+ \hspace{2cm} and node $B$ starts an operation $read()$ after $A$ received $x$,\\
+ \hspace{2cm} then $B$ will read a value $x' \sqsupseteq x$.
+
+ \vspace{1em}
+
+ \textbf{Algorithm $monotonic\_read()$:} {\small (a.k.a. repair-on-read)}
+ \begin{enumerate}
+ \item Broadcast $read()$ to all nodes
+ \item Wait for $k > n/2$ nodes to reply with values $x_1, \dots, x_k$
+ \item If $x_i \ne x_j$ for some nodes $i$ and $j$,\\
+ \hspace{1cm}then call $write(x_1 \sqcup \dots \sqcup x_k)$ and wait for OK from $k' > n/2$ nodes
+ \item Return $x_1 \sqcup \dots \sqcup x_k$
+ \end{enumerate}
+
+ \vspace{1em}
+
+ This makes reads slower in some cases, and is \textbf{not implemented in Garage}.
+\end{frame}
+
+\begin{frame}
+ \frametitle{A hard problem: layout changes}
+ \begin{itemize}
+ \item We rely on quorums $k > n/2$ within each partition:\\
+ $$n=3,~~~~~~~k\ge 2$$
+ \item<2-> When rebalancing, the set of nodes responsible for a partition can change:\\
+ $$\{n_A, n_B, n_C\} \to \{n_A, n_D, n_E\}$$
+ \vspace{.01em}
+ \item<3-> During the rebalancing, $D$ and $E$ don't yet have the data,\\
+ ~~~~~~~~~~~~~~~~~~~and $B$ and $C$ want to get rid of the data to free up space\\
+ \vspace{.2em}
+ $\to$ quorums only within the new set of nodes don't work\\
+ $\to$ how to coordinate? \textbf{currently, we don't...}
+
+ \end{itemize}
+\end{frame}
+
+\section{Operating big Garage clusters}
+
+\begin{frame}
+ \frametitle{Operating Garage}
+ \begin{center}
+ \only<1-2>{
+ \includegraphics[width=.9\linewidth]{assets/scr_garage_status.png}
+ \\\vspace{1em}
+ \visible<2>{\includegraphics[width=.85\linewidth]{assets/scr_garage_status_broken.png}}
+ }
+ \end{center}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Garage's architecture}
+ \begin{center}
+ \only<1>{\includegraphics[width=.45\linewidth]{assets/garage.drawio.pdf}}%
+ \only<2>{\includegraphics[width=.6\linewidth]{assets/garage_sync.drawio.pdf}}%
+ \end{center}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Digging deeper}
+ \begin{center}
+ \only<1>{\includegraphics[width=.9\linewidth]{assets/scr_garage_stats.png}}
+ \only<2>{\includegraphics[width=.6\linewidth]{assets/scr_garage_worker_list.png}}
+ \only<3>{\includegraphics[width=.6\linewidth]{assets/scr_garage_worker_get.png}}
+ \end{center}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Potential limitations and bottlenecks}
+ \begin{itemize}
+ \item Global:
+ \begin{itemize}
+ \item Max. $\sim$100 nodes per cluster (excluding gateways)
+ \end{itemize}
+ \vspace{1em}
+ \item Metadata:
+ \begin{itemize}
+ \item One big bucket = bottleneck, object list on 3 nodes only
+ \end{itemize}
+ \vspace{1em}
+ \item Block manager:
+ \begin{itemize}
+ \item Lots of small files on disk
+ \item Processing the resync queue can be slow
+ \item Multi-HDD support not yet released (soon!)
+ \end{itemize}
+ \end{itemize}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Deployment advice for very large clusters}
+ \begin{itemize}
+ \item Metadata storage:
+ \begin{itemize}
+ \item ZFS mirror (x2) on fast NVMe
+ \item Use LMDB storage engine
+ \end{itemize}
+ \vspace{.5em}
+ \item Data block storage:
+ \begin{itemize}
+ \item Wait for v0.9 with multi-HDD support
+ \item XFS on individual drives
+ \item Increase block size (1MB $\to$ 10MB, requires more RAM and good networking)
+ \item Tune \texttt{resync-tranquility} and \texttt{resync-worker-count} dynamically
+ \end{itemize}
+ \vspace{.5em}
+ \item Other :
+ \begin{itemize}
+ \item Split data over several buckets
+ \item Use less than 100 storage nodes
+ \item Use gateway nodes
+ \end{itemize}
+ \vspace{.5em}
+ \end{itemize}
+ Current deployments: $< 10$ TB, we don't have much experience with more
+\end{frame}
+
+\section{Going further than the S3 API}
+
+\begin{frame}
+ \frametitle{Using Garage for everything}
+ \begin{center}
+ \only<1>{\includegraphics[width=.8\linewidth]{assets/slideB1.png}}%
+ \only<2>{\includegraphics[width=.8\linewidth]{assets/slideB2.png}}%
+ \only<3>{\includegraphics[width=.8\linewidth]{assets/slideB3.png}}%
+ \end{center}
+\end{frame}
+
+\begin{frame}
+ \frametitle{K2V Design}
+ \begin{itemize}
+ \item A new, custom, minimal API\\
+ \vspace{.5em}
+ \begin{itemize}
+ \item Single-item operations
+ \item Operations on ranges and batches of items
+ \item Polling operations to help implement a PubSub pattern
+ \end{itemize}
+ \vspace{1em}
+ \item<2-> Exposes the partitoning mechanism of Garage\\
+ K2V = partition key / sort key / value (like Dynamo)
+ \vspace{1em}
+ \item<3-> Weakly consistent, CRDT-friendly\\
+ $\to$ no support for transactions (not ACID)
+ \vspace{1em}
+ \item<4-> Cryptography-friendly: values are binary blobs
+ \end{itemize}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Handling concurrent values}
+ \textbf{How to handle concurrency?} Example:
+ \vspace{1em}
+ \begin{enumerate}
+ \item Client $A$ reads the initial value of a key, $x_0$
+ \vspace{1em}
+ \item<2-> Client $B$ also reads the initial value $x_0$ of that key
+ \vspace{1em}
+ \item<3-> Client $A$ modifies $x_0$, and writes a new value $x_1$
+ \vspace{1em}
+ \item<4-> Client $B$ also modifies $x_0$, and writes a new value $x'_1$,\\
+ without having a chance to first read $x_1$\\
+ \vspace{1em}
+ $\to$ what should the final state be?
+ \end{enumerate}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Handling concurrent values}
+ \begin{itemize}
+ \item If we keep only $x_1$ or $x'_1$, we risk \textbf{loosing application data}
+ \vspace{1.5em}
+ \item<2-> Values are opaque binary blobs, \textbf{K2V cannot resolve conflicts} by itself\\
+ (e.g. by implementing a CRDT)
+ \vspace{1.5em}
+ \item<3-> Solution: \textbf{we keep both!}\\
+ $\to$ the value of the key is now $\{x_1, x'_1\}$\\
+ $\to$ the client application can decide how to resolve conflicts on the next read
+ \end{itemize}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Keeping track of causality}
+ How does K2V know that $x_1$ and $x'_1$ are concurrent?
+ \vspace{1em}
+ \begin{itemize}
+ \item $read()$ returns \textbf{a set of values} and an associated \textbf{causality token}\\
+ \vspace{1.5em}
+ \item<2-> When calling $write()$, the client sends \textbf{the causality token from its last read}
+ \vspace{1.5em}
+ \item<3-> The causality token represents the set of values \textbf{already seen by the client}\\
+ $\to$ those values are the \textbf{causal past} of the write operation\\
+ $\to$ K2V can keep concurrent values and overwrite all ones in the causal past
+ \vspace{1.5em}
+ \item<4-> Internally, the causality token is \textbf{a vector clock}
+ \end{itemize}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Application: an e-mail storage server}
+ \begin{center}
+ \only<1>{\includegraphics[width=.9\linewidth]{assets/aerogramme.png}}%
+ \end{center}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Aerogramme data model}
+ \begin{center}
+ \only<1->{\includegraphics[width=.4\linewidth]{assets/aerogramme_datatype.drawio.pdf}}%
+ \end{center}
+ \visible<2->{Aerogramme encrypts all stored values for privacy\\
+ (Garage server administrators can't read your mail)}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Different deployment scenarios}
+ \begin{center}
+ \only<1>{\includegraphics[width=.9\linewidth]{assets/aerogramme_components1.drawio.pdf}}%
+ \only<2>{\includegraphics[width=.9\linewidth]{assets/aerogramme_components2.drawio.pdf}}%
+ \end{center}
+\end{frame}
+
+\begin{frame}
+ \frametitle{A new model for building resilient software}
+ How to build an application using only Garage as a data store:
+ \vspace{1em}
+ \begin{enumerate}
+ \item Design a data model suited to K2V\\
+ {\footnotesize (see Cassandra docs on porting SQL data models to Cassandra)}
+ \vspace{1em}
+ \begin{itemize}
+ \item Use CRDTs or other eventually consistent data types (see e.g. Bayou)
+ \vspace{1em}
+ \item Store opaque binary blobs to provide End-to-End Encryption\\
+ \end{itemize}
+ \vspace{1em}
+ \item<2-> Store big blobs (files) using the S3 API
+ \vspace{1em}
+ \item<3-> Let Garage manage sharding, replication, failover, etc.
+ \end{enumerate}
+\end{frame}
+
+\section{Conclusion}
+
+\begin{frame}
+ \frametitle{Perspectives}
+ \begin{itemize}
+ \item Fix the consistency issue when rebalancing
+ \vspace{1em}
+ \item Write about Garage's architecture and properties,\\
+ and about our proposed architecture for (E2EE) apps over K2V+S3
+ \vspace{1em}
+ \item Continue developing Garage; finish Aerogramme; build new applications...
+ \vspace{1em}
+ \item Anything else?
+ \end{itemize}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Where to find us}
+ \begin{center}
+ \includegraphics[width=.25\linewidth]{../../logo/garage_hires.png}\\
+ \vspace{-1em}
+ \url{https://garagehq.deuxfleurs.fr/}\\
+ \url{mailto:garagehq@deuxfleurs.fr}\\
+ \texttt{\#garage:deuxfleurs.fr} on Matrix
+
+ \vspace{1.5em}
+ \includegraphics[width=.06\linewidth]{assets/rust_logo.png}
+ \includegraphics[width=.13\linewidth]{assets/AGPLv3_Logo.png}
+ \end{center}
+\end{frame}
+
+\end{document}
+
+%% vim: set ts=4 sw=4 tw=0 noet spelllang=en :