aboutsummaryrefslogblamecommitdiff
path: root/src/rpc/layout.rs
blob: fe84538e045a0c0b47c61c7607a1cb1182409d25 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575






























































































































































































































































































































































































































































































































































































                                                                                                                              
use std::cmp::Ordering;
use std::collections::{HashMap, HashSet};

use serde::{Deserialize, Serialize};

use garage_util::crdt::{AutoCrdt, Crdt, LwwMap};
use garage_util::data::*;

use crate::ring::*;

/// The layout of the cluster, i.e. the list of roles
/// which are assigned to each cluster node
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct ClusterLayout {
	pub version: u64,

	pub replication_factor: usize,
	pub roles: LwwMap<Uuid, NodeRoleV>,

	/// node_id_vec: a vector of node IDs with a role assigned
	/// in the system (this includes gateway nodes).
	/// The order here is different than the vec stored by `roles`, because:
	/// 1. non-gateway nodes are first so that they have lower numbers
	/// 2. nodes that don't have a role are excluded (but they need to
	///    stay in the CRDT as tombstones)
	pub node_id_vec: Vec<Uuid>,
	/// the assignation of data partitions to node, the values
	/// are indices in node_id_vec
	#[serde(with = "serde_bytes")]
	pub ring_assignation_data: Vec<CompactNodeType>,

	/// Role changes which are staged for the next version of the layout
	pub staging: LwwMap<Uuid, NodeRoleV>,
	pub staging_hash: Hash,
}

#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Debug, Serialize, Deserialize)]
pub struct NodeRoleV(pub Option<NodeRole>);

impl AutoCrdt for NodeRoleV {
	const WARN_IF_DIFFERENT: bool = true;
}

/// The user-assigned roles of cluster nodes
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Debug, Serialize, Deserialize)]
pub struct NodeRole {
	/// Datacenter at which this entry belong. This information might be used to perform a better
	/// geodistribution
	pub zone: String,
	/// The (relative) capacity of the node
	/// If this is set to None, the node does not participate in storing data for the system
	/// and is only active as an API gateway to other nodes
	pub capacity: Option<u32>,
	/// A set of tags to recognize the node
	pub tags: Vec<String>,
}

impl NodeRole {
	pub fn capacity_string(&self) -> String {
		match self.capacity {
			Some(c) => format!("{}", c),
			None => "gateway".to_string(),
		}
	}
}

impl ClusterLayout {
	pub fn new(replication_factor: usize) -> Self {
		let empty_lwwmap = LwwMap::new();
		let empty_lwwmap_hash = blake2sum(&rmp_to_vec_all_named(&empty_lwwmap).unwrap()[..]);

		ClusterLayout {
			version: 0,
			replication_factor,
			roles: LwwMap::new(),
			node_id_vec: Vec::new(),
			ring_assignation_data: Vec::new(),
			staging: empty_lwwmap,
			staging_hash: empty_lwwmap_hash,
		}
	}

	pub fn merge(&mut self, other: &ClusterLayout) -> bool {
		match other.version.cmp(&self.version) {
			Ordering::Greater => {
				*self = other.clone();
				true
			}
			Ordering::Equal => {
				self.staging.merge(&other.staging);

				let new_staging_hash = blake2sum(&rmp_to_vec_all_named(&self.staging).unwrap()[..]);
				let changed = new_staging_hash != self.staging_hash;

				self.staging_hash = new_staging_hash;

				changed
			}
			Ordering::Less => false,
		}
	}

	/// Returns a list of IDs of nodes that currently have
	/// a role in the cluster
	pub fn node_ids(&self) -> &[Uuid] {
		&self.node_id_vec[..]
	}

	pub fn num_nodes(&self) -> usize {
		self.node_id_vec.len()
	}

	/// Returns the role of a node in the layout
	pub fn node_role(&self, node: &Uuid) -> Option<&NodeRole> {
		match self.roles.get(node) {
			Some(NodeRoleV(Some(v))) => Some(v),
			_ => None,
		}
	}

	/// Check a cluster layout for internal consistency
	/// returns true if consistent, false if error
	pub fn check(&self) -> bool {
		// Check that the hash of the staging data is correct
		let staging_hash = blake2sum(&rmp_to_vec_all_named(&self.staging).unwrap()[..]);
		if staging_hash != self.staging_hash {
			return false;
		}

		// Check that node_id_vec contains the correct list of nodes
		let mut expected_nodes = self
			.roles
			.items()
			.iter()
			.filter(|(_, _, v)| v.0.is_some())
			.map(|(id, _, _)| *id)
			.collect::<Vec<_>>();
		expected_nodes.sort();
		let mut node_id_vec = self.node_id_vec.clone();
		node_id_vec.sort();
		if expected_nodes != node_id_vec {
			return false;
		}

		// Check that the assignation data has the correct length
		if self.ring_assignation_data.len() != (1 << PARTITION_BITS) * self.replication_factor {
			return false;
		}

		// Check that the assigned nodes are correct identifiers
		// of nodes that are assigned a role
		// and that role is not the role of a gateway nodes
		for x in self.ring_assignation_data.iter() {
			if *x as usize >= self.node_id_vec.len() {
				return false;
			}
			let node = self.node_id_vec[*x as usize];
			match self.roles.get(&node) {
				Some(NodeRoleV(Some(x))) if x.capacity.is_some() => (),
				_ => return false,
			}
		}

		true
	}

	/// Calculate an assignation of partitions to nodes
	pub fn calculate_partition_assignation(&mut self) -> bool {
		let (configured_nodes, zones) = self.configured_nodes_and_zones();
		let n_zones = zones.len();

		println!("Calculating updated partition assignation, this may take some time...");
		println!();

		let old_partitions = self.parse_assignation_data();

		let mut partitions = old_partitions.clone();
		for part in partitions.iter_mut() {
			part.nodes
				.retain(|(_, info)| info.map(|x| x.capacity.is_some()).unwrap_or(false));
		}

		// When nodes are removed, or when bootstraping an assignation from
		// scratch for a new cluster, the old partitions will have holes (or be empty).
		// Here we add more nodes to make a complete (sub-optimal) assignation,
		// using an initial partition assignation that is calculated using the multi-dc maglev trick
		match self.initial_partition_assignation() {
			Some(initial_partitions) => {
				for (part, ipart) in partitions.iter_mut().zip(initial_partitions.iter()) {
					for (id, info) in ipart.nodes.iter() {
						if part.nodes.len() < self.replication_factor {
							part.add(part.nodes.len() + 1, n_zones, id, info.unwrap());
						}
					}
					assert!(part.nodes.len() == self.replication_factor);
				}
			}
			None => {
				return false;
			}
		}

		// Calculate how many partitions each node should ideally store,
		// and how many partitions they are storing with the current assignation
		// This defines our target for which we will optimize in the following loop.
		let total_capacity = configured_nodes
			.iter()
			.map(|(_, info)| info.capacity.unwrap_or(0))
			.sum::<u32>() as usize;
		let total_partitions = self.replication_factor * (1 << PARTITION_BITS);
		let target_partitions_per_node = configured_nodes
			.iter()
			.map(|(id, info)| {
				(
					*id,
					info.capacity.unwrap_or(0) as usize * total_partitions / total_capacity,
				)
			})
			.collect::<HashMap<&Uuid, usize>>();

		let mut partitions_per_node = self.partitions_per_node(&partitions[..]);

		println!("Target number of partitions per node:");
		for (node, npart) in target_partitions_per_node.iter() {
			println!("{:?}\t{}", node, npart);
		}
		println!();

		// Shuffle partitions between nodes so that nodes will reach (or better approach)
		// their target number of stored partitions
		loop {
			let mut option = None;
			for (i, part) in partitions.iter_mut().enumerate() {
				for (irm, (idrm, _)) in part.nodes.iter().enumerate() {
					let suprm = partitions_per_node.get(*idrm).cloned().unwrap_or(0) as i32
						- target_partitions_per_node.get(*idrm).cloned().unwrap_or(0) as i32;

					for (idadd, infoadd) in configured_nodes.iter() {
						// skip replacing a node by itself
						// and skip replacing by gateway nodes
						if idadd == idrm || infoadd.capacity.is_none() {
							continue;
						}

						let supadd = partitions_per_node.get(*idadd).cloned().unwrap_or(0) as i32
							- target_partitions_per_node.get(*idadd).cloned().unwrap_or(0) as i32;

						// We want to try replacing node idrm by node idadd
						// if that brings us close to our goal.
						let square = |i: i32| i * i;
						let oldcost = square(suprm) + square(supadd);
						let newcost = square(suprm - 1) + square(supadd + 1);
						if newcost >= oldcost {
							// not closer to our goal
							continue;
						}
						let gain = oldcost - newcost;

						let mut newpart = part.clone();

						newpart.nodes.remove(irm);
						if !newpart.add(newpart.nodes.len() + 1, n_zones, idadd, infoadd) {
							continue;
						}
						assert!(newpart.nodes.len() == self.replication_factor);

						if !old_partitions[i]
							.is_valid_transition_to(&newpart, self.replication_factor)
						{
							continue;
						}

						if option
							.as_ref()
							.map(|(old_gain, _, _, _, _)| gain > *old_gain)
							.unwrap_or(true)
						{
							option = Some((gain, i, idadd, idrm, newpart));
						}
					}
				}
			}
			if let Some((_gain, i, idadd, idrm, newpart)) = option {
				*partitions_per_node.entry(idadd).or_insert(0) += 1;
				*partitions_per_node.get_mut(idrm).unwrap() -= 1;
				partitions[i] = newpart;
			} else {
				break;
			}
		}

		// Check we completed the assignation correctly
		// (this is a set of checks for the algorithm's consistency)
		assert!(partitions.len() == (1 << PARTITION_BITS));
		assert!(partitions
			.iter()
			.all(|p| p.nodes.len() == self.replication_factor));

		let new_partitions_per_node = self.partitions_per_node(&partitions[..]);
		assert!(new_partitions_per_node == partitions_per_node);

		// Show statistics
		println!("New number of partitions per node:");
		for (node, npart) in partitions_per_node.iter() {
			println!("{:?}\t{}", node, npart);
		}
		println!();

		let mut diffcount = HashMap::new();
		for (oldpart, newpart) in old_partitions.iter().zip(partitions.iter()) {
			let nminus = oldpart.txtplus(newpart);
			let nplus = newpart.txtplus(oldpart);
			let tup = (nminus, nplus);
			*diffcount.entry(tup).or_insert(0) += 1;
		}
		let mut diffcount = diffcount.into_iter().collect::<Vec<_>>();
		diffcount.sort();
		println!("Number of partitions that move:");
		for ((nminus, nplus), npart) in diffcount {
			if nminus != "[...]" || nplus != "[...]" {
				println!("\t{}\t{} -> {}", npart, nminus, nplus);
			}
		}
		println!();

		// Calculate and save new assignation data
		let (nodes, assignation_data) =
			self.compute_assignation_data(&configured_nodes[..], &partitions[..]);

		self.node_id_vec = nodes;
		self.ring_assignation_data = assignation_data;

		true
	}

	fn initial_partition_assignation(&self) -> Option<Vec<PartitionAss<'_>>> {
		let (configured_nodes, zones) = self.configured_nodes_and_zones();
		let n_zones = zones.len();

		// Create a vector of partition indices (0 to 2**PARTITION_BITS-1)
		let partitions_idx = (0usize..(1usize << PARTITION_BITS)).collect::<Vec<_>>();

		// Prepare ring
		let mut partitions: Vec<PartitionAss> = partitions_idx
			.iter()
			.map(|_i| PartitionAss::new())
			.collect::<Vec<_>>();

		// Create MagLev priority queues for each node
		let mut queues = configured_nodes
			.iter()
			.filter(|(_id, info)| info.capacity.is_some())
			.map(|(node_id, node_info)| {
				let mut parts = partitions_idx
					.iter()
					.map(|i| {
						let part_data =
							[&u16::to_be_bytes(*i as u16)[..], node_id.as_slice()].concat();
						(*i, fasthash(&part_data[..]))
					})
					.collect::<Vec<_>>();
				parts.sort_by_key(|(_i, h)| *h);
				let parts_i = parts.iter().map(|(i, _h)| *i).collect::<Vec<_>>();
				(node_id, node_info, parts_i, 0)
			})
			.collect::<Vec<_>>();

		let max_capacity = configured_nodes
			.iter()
			.filter_map(|(_, node_info)| node_info.capacity)
			.fold(0, std::cmp::max);

		// Fill up ring
		for rep in 0..self.replication_factor {
			queues.sort_by_key(|(ni, _np, _q, _p)| {
				let queue_data = [&u16::to_be_bytes(rep as u16)[..], ni.as_slice()].concat();
				fasthash(&queue_data[..])
			});

			for (_, _, _, pos) in queues.iter_mut() {
				*pos = 0;
			}

			let mut remaining = partitions_idx.len();
			while remaining > 0 {
				let remaining0 = remaining;
				for i_round in 0..max_capacity {
					for (node_id, node_info, q, pos) in queues.iter_mut() {
						if i_round >= node_info.capacity.unwrap() {
							continue;
						}
						for (pos2, &qv) in q.iter().enumerate().skip(*pos) {
							if partitions[qv].add(rep + 1, n_zones, node_id, node_info) {
								remaining -= 1;
								*pos = pos2 + 1;
								break;
							}
						}
					}
				}
				if remaining == remaining0 {
					// No progress made, exit
					return None;
				}
			}
		}

		Some(partitions)
	}

	fn configured_nodes_and_zones(&self) -> (Vec<(&Uuid, &NodeRole)>, HashSet<&str>) {
		let configured_nodes = self
			.roles
			.items()
			.iter()
			.filter(|(_id, _, info)| info.0.is_some())
			.map(|(id, _, info)| (id, info.0.as_ref().unwrap()))
			.collect::<Vec<(&Uuid, &NodeRole)>>();

		let zones = configured_nodes
			.iter()
			.filter(|(_id, info)| info.capacity.is_some())
			.map(|(_id, info)| info.zone.as_str())
			.collect::<HashSet<&str>>();

		(configured_nodes, zones)
	}

	fn compute_assignation_data<'a>(
		&self,
		configured_nodes: &[(&'a Uuid, &'a NodeRole)],
		partitions: &[PartitionAss<'a>],
	) -> (Vec<Uuid>, Vec<CompactNodeType>) {
		assert!(partitions.len() == (1 << PARTITION_BITS));

		// Make a canonical order for nodes
		let mut nodes = configured_nodes
			.iter()
			.filter(|(_id, info)| info.capacity.is_some())
			.map(|(id, _)| **id)
			.collect::<Vec<_>>();
		let nodes_rev = nodes
			.iter()
			.enumerate()
			.map(|(i, id)| (*id, i as CompactNodeType))
			.collect::<HashMap<Uuid, CompactNodeType>>();

		let mut assignation_data = vec![];
		for partition in partitions.iter() {
			assert!(partition.nodes.len() == self.replication_factor);
			for (id, _) in partition.nodes.iter() {
				assignation_data.push(*nodes_rev.get(id).unwrap());
			}
		}

		nodes.extend(
			configured_nodes
				.iter()
				.filter(|(_id, info)| info.capacity.is_none())
				.map(|(id, _)| **id),
		);

		(nodes, assignation_data)
	}

	fn parse_assignation_data(&self) -> Vec<PartitionAss<'_>> {
		if self.ring_assignation_data.len() == self.replication_factor * (1 << PARTITION_BITS) {
			// If the previous assignation data is correct, use that
			let mut partitions = vec![];
			for i in 0..(1 << PARTITION_BITS) {
				let mut part = PartitionAss::new();
				for node_i in self.ring_assignation_data
					[i * self.replication_factor..(i + 1) * self.replication_factor]
					.iter()
				{
					let node_id = &self.node_id_vec[*node_i as usize];

					if let Some(NodeRoleV(Some(info))) = self.roles.get(node_id) {
						part.nodes.push((node_id, Some(info)));
					} else {
						part.nodes.push((node_id, None));
					}
				}
				partitions.push(part);
			}
			partitions
		} else {
			// Otherwise start fresh
			(0..(1 << PARTITION_BITS))
				.map(|_| PartitionAss::new())
				.collect()
		}
	}

	fn partitions_per_node<'a>(&self, partitions: &[PartitionAss<'a>]) -> HashMap<&'a Uuid, usize> {
		let mut partitions_per_node = HashMap::<&Uuid, usize>::new();
		for p in partitions.iter() {
			for (id, _) in p.nodes.iter() {
				*partitions_per_node.entry(*id).or_insert(0) += 1;
			}
		}
		partitions_per_node
	}
}

// ---- Internal structs for partition assignation in layout ----

#[derive(Clone)]
struct PartitionAss<'a> {
	nodes: Vec<(&'a Uuid, Option<&'a NodeRole>)>,
}

impl<'a> PartitionAss<'a> {
	fn new() -> Self {
		Self { nodes: Vec::new() }
	}

	fn nplus(&self, other: &PartitionAss<'a>) -> usize {
		self.nodes
			.iter()
			.filter(|x| !other.nodes.contains(x))
			.count()
	}

	fn txtplus(&self, other: &PartitionAss<'a>) -> String {
		let mut nodes = self
			.nodes
			.iter()
			.filter(|x| !other.nodes.contains(x))
			.map(|x| format!("{:?}", x.0))
			.collect::<Vec<_>>();
		nodes.sort();
		if self.nodes.iter().any(|x| other.nodes.contains(x)) {
			nodes.push("...".into());
		}
		format!("[{}]", nodes.join(" "))
	}

	fn is_valid_transition_to(&self, other: &PartitionAss<'a>, replication_factor: usize) -> bool {
		let min_keep_nodes_per_part = (replication_factor + 1) / 2;
		let n_removed = self.nplus(other);

		if self.nodes.len() <= min_keep_nodes_per_part {
			n_removed == 0
		} else {
			n_removed <= self.nodes.len() - min_keep_nodes_per_part
		}
	}

	fn add(
		&mut self,
		target_len: usize,
		n_zones: usize,
		node: &'a Uuid,
		role: &'a NodeRole,
	) -> bool {
		if self.nodes.len() != target_len - 1 {
			return false;
		}

		let p_zns = self
			.nodes
			.iter()
			.map(|(_id, info)| info.unwrap().zone.as_str())
			.collect::<HashSet<&str>>();
		if (p_zns.len() < n_zones && !p_zns.contains(&role.zone.as_str()))
			|| (p_zns.len() == n_zones && !self.nodes.iter().any(|(id, _)| *id == node))
		{
			self.nodes.push((node, Some(role)));
			true
		} else {
			false
		}
	}
}