aboutsummaryrefslogtreecommitdiff
path: root/src/bayou.rs
blob: 56203ebe456bdef028bdfa69545dd7038a21c0a5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
use std::time::{Duration, Instant};

use anyhow::{anyhow, bail, Result};
use rand::prelude::*;
use serde::{Deserialize, Serialize};
use tokio::io::AsyncReadExt;

use k2v_client::{BatchDeleteOp, BatchReadOp, Filter, K2vClient, K2vValue};
use rusoto_s3::{
    DeleteObjectRequest, GetObjectRequest, ListObjectsV2Request, PutObjectRequest, S3Client, S3,
};

use crate::cryptoblob::*;
use crate::login::Credentials;
use crate::time::now_msec;

const SAVE_STATE_EVERY: usize = 64;

// Checkpointing interval constants: a checkpoint is not made earlier
// than CHECKPOINT_INTERVAL time after the last one, and is not made
// if there are less than CHECKPOINT_MIN_OPS new operations since last one.
const CHECKPOINT_INTERVAL: Duration = Duration::from_secs(3600);
const CHECKPOINT_MIN_OPS: usize = 16;
// HYPOTHESIS: processes are able to communicate in a synchronous
// fashion in times that are small compared to CHECKPOINT_INTERVAL.
// More precisely, if a process tried to save an operation within the last
// CHECKPOINT_INTERVAL, we are sure to read it from storage if it was
// successfully saved (and if we don't read it, it means it has been
// definitely discarded due to an error).

// Keep at least two checkpoints, here three, to avoid race conditions
// between processes doing .checkpoint() and those doing .sync()
const CHECKPOINTS_TO_KEEP: usize = 3;

pub trait BayouState:
    Default + Clone + Serialize + for<'de> Deserialize<'de> + Send + Sync + 'static
{
    type Op: Clone + Serialize + for<'de> Deserialize<'de> + std::fmt::Debug + Send + Sync + 'static;

    fn apply(&self, op: &Self::Op) -> Self;
}

pub struct Bayou<S: BayouState> {
    bucket: String,
    path: String,
    key: Key,

    k2v: K2vClient,
    s3: S3Client,

    checkpoint: (Timestamp, S),
    history: Vec<(Timestamp, S::Op, Option<S>)>,
    last_sync: Option<Instant>,
    last_try_checkpoint: Option<Instant>,
}

impl<S: BayouState> Bayou<S> {
    pub fn new(creds: &Credentials, path: String) -> Result<Self> {
        let k2v_client = creds.k2v_client()?;
        let s3_client = creds.s3_client()?;

        Ok(Self {
            bucket: creds.bucket().to_string(),
            path,
            key: creds.keys.master.clone(),
            k2v: k2v_client,
            s3: s3_client,
            checkpoint: (Timestamp::zero(), S::default()),
            history: vec![],
            last_sync: None,
            last_try_checkpoint: None,
        })
    }

    /// Re-reads the state from persistent storage backend
    pub async fn sync(&mut self) -> Result<()> {
        // 1. List checkpoints
        let checkpoints = self.list_checkpoints().await?;
        eprintln!("(sync) listed checkpoints: {:?}", checkpoints);

        // 2. Load last checkpoint if different from currently used one
        let checkpoint = if let Some((ts, key)) = checkpoints.last() {
            if *ts == self.checkpoint.0 {
                (*ts, None)
            } else {
                eprintln!("(sync) loading checkpoint: {}", key);

                let mut gor = GetObjectRequest::default();
                gor.bucket = self.bucket.clone();
                gor.key = key.to_string();
                let obj_res = self.s3.get_object(gor).await?;

                let obj_body = obj_res.body.ok_or(anyhow!("Missing object body"))?;
                let mut buf = Vec::with_capacity(obj_res.content_length.unwrap_or(128) as usize);
                obj_body.into_async_read().read_to_end(&mut buf).await?;

                eprintln!("(sync) checkpoint body length: {}", buf.len());

                let ck = open_deserialize::<S>(&buf, &self.key)?;
                (*ts, Some(ck))
            }
        } else {
            (Timestamp::zero(), None)
        };

        if self.checkpoint.0 > checkpoint.0 {
            bail!("Existing checkpoint is more recent than stored one");
        }

        if let Some(ck) = checkpoint.1 {
            eprintln!(
                "(sync) updating checkpoint to loaded state at {:?}",
                checkpoint.0
            );
            self.checkpoint = (checkpoint.0, ck);
        };

        // remove from history events before checkpoint
        self.history = std::mem::take(&mut self.history)
            .into_iter()
            .skip_while(|(ts, _, _)| *ts < self.checkpoint.0)
            .collect();

        // 3. List all operations starting from checkpoint
        let ts_ser = self.checkpoint.0.serialize();
        eprintln!("(sync) looking up operations starting at {}", ts_ser);
        let ops_map = self
            .k2v
            .read_batch(&[BatchReadOp {
                partition_key: &self.path,
                filter: Filter {
                    start: Some(&ts_ser),
                    end: None,
                    prefix: None,
                    limit: None,
                    reverse: false,
                },
                single_item: false,
                conflicts_only: false,
                tombstones: false,
            }])
            .await?
            .into_iter()
            .next()
            .ok_or(anyhow!("Missing K2V result"))?
            .items;

        let mut ops = vec![];
        for (tsstr, val) in ops_map {
            let ts = Timestamp::parse(&tsstr)
                .ok_or(anyhow!("Invalid operation timestamp: {}", tsstr))?;
            if val.value.len() != 1 {
                bail!("Invalid operation, has {} values", val.value.len());
            }
            match &val.value[0] {
                K2vValue::Value(v) => {
                    let op = open_deserialize::<S::Op>(&v, &self.key)?;
                    eprintln!("(sync) operation {}: {} {:?}", tsstr, base64::encode(v), op);
                    ops.push((ts, op));
                }
                K2vValue::Tombstone => {
                    unreachable!();
                }
            }
        }
        ops.sort_by_key(|(ts, _)| *ts);
        eprintln!("(sync) {} operations", ops.len());

        if ops.len() < self.history.len() {
            bail!("Some operations have disappeared from storage!");
        }

        // 4. Check that first operation has same timestamp as checkpoint (if not zero)
        if self.checkpoint.0 != Timestamp::zero() && ops[0].0 != self.checkpoint.0 {
            bail!(
                "First operation in listing doesn't have timestamp that corresponds to checkpoint"
            );
        }

        // 5. Apply all operations in order
        // Hypothesis: before the loaded checkpoint, operations haven't changed
        // between what's on storage and what we used to calculate the state in RAM here.
        let i0 = self
            .history
            .iter()
            .enumerate()
            .zip(ops.iter())
            .skip_while(|((_, (ts1, _, _)), (ts2, _))| ts1 == ts2)
            .map(|((i, _), _)| i)
            .next()
            .unwrap_or(self.history.len());

        if ops.len() > i0 {
            // Remove operations from first position where histories differ
            self.history.truncate(i0);

            // Look up last calculated state which we have saved and start from there.
            let mut last_state = (0, &self.checkpoint.1);
            for (i, (_, _, state_opt)) in self.history.iter().enumerate().rev() {
                if let Some(state) = state_opt {
                    last_state = (i + 1, state);
                    break;
                }
            }

            // Calculate state at the end of this common part of the history
            let mut state = last_state.1.clone();
            for (_, op, _) in self.history[last_state.0..].iter() {
                state = state.apply(op);
            }

            // Now, apply all operations retrieved from storage after the common part
            for (ts, op) in ops.drain(i0..) {
                state = state.apply(&op);
                if (self.history.len() + 1) % SAVE_STATE_EVERY == 0 {
                    self.history.push((ts, op, Some(state.clone())));
                } else {
                    self.history.push((ts, op, None));
                }
            }

            // Always save final state as result of last operation
            self.history.last_mut().unwrap().2 = Some(state);
        }

        self.last_sync = Some(Instant::now());
        Ok(())
    }

    async fn check_recent_sync(&mut self) -> Result<()> {
        match self.last_sync {
            Some(t) if (Instant::now() - t) < CHECKPOINT_INTERVAL / 10 => Ok(()),
            _ => self.sync().await,
        }
    }

    /// Applies a new operation on the state. Once this function returns,
    /// the option has been safely persisted to storage backend
    pub async fn push(&mut self, op: S::Op) -> Result<()> {
        self.check_recent_sync().await?;

        eprintln!("(push) add operation: {:?}", op);

        let ts = Timestamp::after(
            self.history
                .last()
                .map(|(ts, _, _)| ts)
                .unwrap_or(&self.checkpoint.0),
        );
        self.k2v
            .insert_item(
                &self.path,
                &ts.serialize(),
                seal_serialize(&op, &self.key)?,
                None,
            )
            .await?;

        let new_state = self.state().apply(&op);
        self.history.push((ts, op, Some(new_state)));

        // Clear previously saved state in history if not required
        let hlen = self.history.len();
        if hlen >= 2 && (hlen - 1) % SAVE_STATE_EVERY != 0 {
            self.history[hlen - 2].2 = None;
        }

        self.checkpoint().await?;

        Ok(())
    }

    /// Save a new checkpoint if previous checkpoint is too old
    pub async fn checkpoint(&mut self) -> Result<()> {
        match self.last_try_checkpoint {
            Some(ts) if Instant::now() - ts < CHECKPOINT_INTERVAL / 10 => Ok(()),
            _ => {
                let res = self.checkpoint_internal().await;
                if res.is_ok() {
                    self.last_try_checkpoint = Some(Instant::now());
                }
                res
            }
        }
    }

    async fn checkpoint_internal(&mut self) -> Result<()> {
        self.check_recent_sync().await?;

        // Check what would be the possible time for a checkpoint in the history we have
        let now = now_msec() as i128;
        let i_cp = match self
            .history
            .iter()
            .enumerate()
            .rev()
            .skip_while(|(_, (ts, _, _))| {
                (now - ts.msec as i128) < CHECKPOINT_INTERVAL.as_millis() as i128
            })
            .map(|(i, _)| i)
            .next()
        {
            Some(i) => i,
            None => {
                eprintln!("(cp) Oldest operation is too recent to trigger checkpoint");
                return Ok(());
            }
        };

        if i_cp < CHECKPOINT_MIN_OPS {
            eprintln!("(cp) Not enough old operations to trigger checkpoint");
            return Ok(());
        }

        let ts_cp = self.history[i_cp].0;
        eprintln!(
            "(cp) we could checkpoint at time {} (index {} in history)",
            ts_cp.serialize(),
            i_cp
        );

        // Check existing checkpoints: if last one is too recent, don't checkpoint again.
        let existing_checkpoints = self.list_checkpoints().await?;
        eprintln!("(cp) listed checkpoints: {:?}", existing_checkpoints);

        if let Some(last_cp) = existing_checkpoints.last() {
            if (ts_cp.msec as i128 - last_cp.0.msec as i128)
                < CHECKPOINT_INTERVAL.as_millis() as i128
            {
                eprintln!(
                    "(cp) last checkpoint is too recent: {}, not checkpointing",
                    last_cp.0.serialize()
                );
                return Ok(());
            }
        }

        eprintln!("(cp) saving checkpoint at {}", ts_cp.serialize());

        // Calculate state at time of checkpoint
        let mut last_known_state = (0, &self.checkpoint.1);
        for (i, (_, _, st)) in self.history[..i_cp].iter().enumerate() {
            if let Some(s) = st {
                last_known_state = (i + 1, s);
            }
        }
        let mut state_cp = last_known_state.1.clone();
        for (_, op, _) in self.history[last_known_state.0..i_cp].iter() {
            state_cp = state_cp.apply(op);
        }

        // Serialize and save checkpoint
        let cryptoblob = seal_serialize(&state_cp, &self.key)?;
        eprintln!("(cp) checkpoint body length: {}", cryptoblob.len());

        let mut por = PutObjectRequest::default();
        por.bucket = self.bucket.clone();
        por.key = format!("{}/checkpoint/{}", self.path, ts_cp.serialize());
        por.body = Some(cryptoblob.into());
        self.s3.put_object(por).await?;

        // Drop old checkpoints (but keep at least CHECKPOINTS_TO_KEEP of them)
        let ecp_len = existing_checkpoints.len();
        if ecp_len + 1 > CHECKPOINTS_TO_KEEP {
            let last_to_keep = ecp_len + 1 - CHECKPOINTS_TO_KEEP;

            // Delete blobs
            for (_ts, key) in existing_checkpoints[..last_to_keep].iter() {
                eprintln!("(cp) drop old checkpoint {}", key);
                let mut dor = DeleteObjectRequest::default();
                dor.bucket = self.bucket.clone();
                dor.key = key.to_string();
                self.s3.delete_object(dor).await?;
            }

            // Delete corresponding range of operations
            let ts_ser = existing_checkpoints[last_to_keep].0.serialize();
            self.k2v
                .delete_batch(&[BatchDeleteOp {
                    partition_key: &self.path,
                    prefix: None,
                    start: None,
                    end: Some(&ts_ser),
                    single_item: false,
                }])
                .await?;
        }

        Ok(())
    }

    pub fn state(&self) -> &S {
        if let Some(last) = self.history.last() {
            last.2.as_ref().unwrap()
        } else {
            &self.checkpoint.1
        }
    }

    // ---- INTERNAL ----

    async fn list_checkpoints(&self) -> Result<Vec<(Timestamp, String)>> {
        let prefix = format!("{}/checkpoint/", self.path);

        let mut lor = ListObjectsV2Request::default();
        lor.bucket = self.bucket.clone();
        lor.max_keys = Some(1000);
        lor.prefix = Some(prefix.clone());

        let checkpoints_res = self.s3.list_objects_v2(lor).await?;

        let mut checkpoints = vec![];
        for object in checkpoints_res.contents.unwrap_or_default() {
            if let Some(key) = object.key {
                if let Some(ckid) = key.strip_prefix(&prefix) {
                    if let Some(ts) = Timestamp::parse(ckid) {
                        checkpoints.push((ts, key));
                    }
                }
            }
        }
        checkpoints.sort_by_key(|(ts, _)| *ts);
        Ok(checkpoints)
    }
}

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)]
pub struct Timestamp {
    pub msec: u64,
    pub rand: u64,
}

impl Timestamp {
    pub fn now() -> Self {
        let mut rng = thread_rng();
        Self {
            msec: now_msec(),
            rand: rng.gen::<u64>(),
        }
    }

    pub fn after(other: &Self) -> Self {
        let mut rng = thread_rng();
        Self {
            msec: std::cmp::max(now_msec(), other.msec + 1),
            rand: rng.gen::<u64>(),
        }
    }

    pub fn zero() -> Self {
        Self { msec: 0, rand: 0 }
    }

    pub fn serialize(&self) -> String {
        let mut bytes = [0u8; 16];
        bytes[0..8].copy_from_slice(&u64::to_be_bytes(self.msec));
        bytes[8..16].copy_from_slice(&u64::to_be_bytes(self.rand));
        hex::encode(&bytes)
    }

    pub fn parse(v: &str) -> Option<Self> {
        let bytes = hex::decode(v).ok()?;
        if bytes.len() != 16 {
            return None;
        }
        Some(Self {
            msec: u64::from_be_bytes(bytes[0..8].try_into().unwrap()),
            rand: u64::from_be_bytes(bytes[8..16].try_into().unwrap()),
        })
    }
}