pub mod ldap_provider;
pub mod static_provider;
use std::collections::BTreeMap;
use std::sync::Arc;
use anyhow::{anyhow, bail, Context, Result};
use async_trait::async_trait;
use k2v_client::{
BatchInsertOp, BatchReadOp, CausalValue, CausalityToken, Filter, K2vClient, K2vValue, K2vClientConfig
};
use rand::prelude::*;
use rusoto_core::HttpClient;
use rusoto_credential::{AwsCredentials, StaticProvider};
use rusoto_s3::S3Client;
use crate::cryptoblob::*;
/// The trait LoginProvider defines the interface for a login provider that allows
/// to retrieve storage and cryptographic credentials for access to a user account
/// from their username and password.
#[async_trait]
pub trait LoginProvider {
/// The login method takes an account's password as an input to decypher
/// decryption keys and obtain full access to the user's account.
async fn login(&self, username: &str, password: &str) -> Result<Credentials>;
/// The public_login method takes an account's email address and returns
/// public credentials for adding mails to the user's inbox.
async fn public_login(&self, email: &str) -> Result<PublicCredentials>;
}
/// ArcLoginProvider is simply an alias on a structure that is used
/// in many places in the code
pub type ArcLoginProvider = Arc<dyn LoginProvider + Send + Sync>;
/// The struct Credentials represent all of the necessary information to interact
/// with a user account's data after they are logged in.
#[derive(Clone, Debug)]
pub struct Credentials {
/// The storage credentials are used to authenticate access to the underlying storage (S3, K2V)
pub storage: StorageCredentials,
/// The cryptographic keys are used to encrypt and decrypt data stored in S3 and K2V
pub keys: CryptoKeys,
}
#[derive(Clone, Debug)]
pub struct PublicCredentials {
/// The storage credentials are used to authenticate access to the underlying storage (S3, K2V)
pub storage: StorageCredentials,
pub public_key: PublicKey,
}
/// The struct StorageCredentials contains access key to an S3 and K2V bucket
#[derive(Clone, Debug, Hash, PartialEq, Eq)]
pub struct StorageCredentials {
pub s3_region: Region,
pub k2v_region: Region,
pub aws_access_key_id: String,
pub aws_secret_access_key: String,
pub bucket: String,
}
/// The struct UserSecrets represents intermediary secrets that are mixed in with the user's
/// password when decrypting the cryptographic keys that are stored in their bucket.
/// These secrets should be stored somewhere else (e.g. in the LDAP server or in the
/// local config file), as an additionnal authentification factor so that the password
/// isn't enough just alone to decrypt the content of a user's bucket.
pub struct UserSecrets {
/// The main user secret that will be used to encrypt keys when a new password is added
pub user_secret: String,
/// Alternative user secrets that will be tried when decrypting keys that were encrypted
/// with old passwords
pub alternate_user_secrets: Vec<String>,
}
/// The struct CryptoKeys contains the cryptographic keys used to encrypt and decrypt
/// data in a user's mailbox.
#[derive(Clone, Debug)]
pub struct CryptoKeys {
/// Master key for symmetric encryption of mailbox data
pub master: Key,
/// Public/private keypair for encryption of incomming emails (secret part)
pub secret: SecretKey,
/// Public/private keypair for encryption of incomming emails (public part)
pub public: PublicKey,
}
/// A custom S3 region, composed of a region name and endpoint.
/// We use this instead of rusoto_signature::Region so that we can
/// derive Hash and Eq
#[derive(Clone, Debug, Hash, PartialEq, Eq)]
pub struct Region {
pub name: String,
pub endpoint: String,
}
impl Region {
pub fn as_rusoto_region(&self) -> rusoto_signature::Region {
rusoto_signature::Region::Custom {
name: self.name.clone(),
endpoint: self.endpoint.clone(),
}
}
}
// ----
impl Credentials {
pub fn k2v_client(&self) -> Result<K2vClient> {
self.storage.k2v_client()
}
pub fn s3_client(&self) -> Result<S3Client> {
self.storage.s3_client()
}
pub fn bucket(&self) -> &str {
self.storage.bucket.as_str()
}
}
impl StorageCredentials {
pub fn k2v_client(&self) -> Result<K2vClient> {
let config = K2vClientConfig {
endpoint: self.k2v_region.endpoint.clone(),
region: self.k2v_region.name.clone(),
aws_access_key_id: self.aws_access_key_id.clone(),
aws_secret_access_key: self.aws_secret_access_key.clone(),
bucket: self.bucket.clone(),
user_agent: None,
};
Ok(K2vClient::new(config)?)
}
pub fn s3_client(&self) -> Result<S3Client> {
let aws_creds_provider = StaticProvider::new_minimal(
self.aws_access_key_id.clone(),
self.aws_secret_access_key.clone(),
);
Ok(S3Client::new_with(
HttpClient::new()?,
aws_creds_provider,
self.s3_region.as_rusoto_region(),
))
}
}
impl CryptoKeys {
pub async fn init(
storage: &StorageCredentials,
user_secrets: &UserSecrets,
password: &str,
) -> Result<Self> {
// Check that salt and public don't exist already
let k2v = storage.k2v_client()?;
let (salt_ct, public_ct) = Self::check_uninitialized(&k2v).await?;
// Generate salt for password identifiers
let mut ident_salt = [0u8; 32];
thread_rng().fill(&mut ident_salt);
// Generate (public, private) key pair and master key
let (public, secret) = gen_keypair();
let master = gen_key();
let keys = CryptoKeys {
master,
secret,
public,
};
// Generate short password digest (= password identity)
let ident = argon2_kdf(&ident_salt, password.as_bytes(), 16)?;
// Generate salt for KDF
let mut kdf_salt = [0u8; 32];
thread_rng().fill(&mut kdf_salt);
// Calculate key for password secret box
let password_key = user_secrets.derive_password_key(&kdf_salt, password)?;
// Seal a secret box that contains our crypto keys
let password_sealed = seal(&keys.serialize(), &password_key)?;
let password_sortkey = format!("password:{}", hex::encode(&ident));
let password_blob = [&kdf_salt[..], &password_sealed].concat();
// Write values to storage
k2v.insert_batch(&[
k2v_insert_single_key("keys", "salt", salt_ct, ident_salt),
k2v_insert_single_key("keys", "public", public_ct, keys.public),
k2v_insert_single_key("keys", &password_sortkey, None, &password_blob),
])
.await
.context("InsertBatch for salt, public, and password")?;
Ok(keys)
}
pub async fn init_without_password(
storage: &StorageCredentials,
master: &Key,
secret: &SecretKey,
) -> Result<Self> {
// Check that salt and public don't exist already
let k2v = storage.k2v_client()?;
let (salt_ct, public_ct) = Self::check_uninitialized(&k2v).await?;
// Generate salt for password identifiers
let mut ident_salt = [0u8; 32];
thread_rng().fill(&mut ident_salt);
// Create CryptoKeys struct from given keys
let public = secret.public_key();
let keys = CryptoKeys {
master: master.clone(),
secret: secret.clone(),
public,
};
// Write values to storage
k2v.insert_batch(&[
k2v_insert_single_key("keys", "salt", salt_ct, ident_salt),
k2v_insert_single_key("keys", "public", public_ct, keys.public),
])
.await
.context("InsertBatch for salt and public")?;
Ok(keys)
}
pub async fn open(
storage: &StorageCredentials,
user_secrets: &UserSecrets,
password: &str,
) -> Result<Self> {
let k2v = storage.k2v_client()?;
let (ident_salt, expected_public) = Self::load_salt_and_public(&k2v).await?;
// Generate short password digest (= password identity)
let ident = argon2_kdf(&ident_salt, password.as_bytes(), 16)?;
// Lookup password blob
let password_sortkey = format!("password:{}", hex::encode(&ident));
let password_blob = {
let mut val = match k2v.read_item("keys", &password_sortkey).await {
Err(k2v_client::Error::NotFound) => {
bail!("invalid password")
}
x => x?,
};
if val.value.len() != 1 {
bail!("multiple values for password in storage");
}
match val.value.pop().unwrap() {
K2vValue::Value(v) => v,
K2vValue::Tombstone => bail!("invalid password"),
}
};
// Try to open blob
let kdf_salt = &password_blob[..32];
let password_openned =
user_secrets.try_open_encrypted_keys(kdf_salt, password, &password_blob[32..])?;
let keys = Self::deserialize(&password_openned)?;
if keys.public != expected_public {
bail!("Password public key doesn't match stored public key");
}
Ok(keys)
}
pub async fn open_without_password(
storage: &StorageCredentials,
master: &Key,
secret: &SecretKey,
) -> Result<Self> {
let k2v = storage.k2v_client()?;
let (_ident_salt, expected_public) = Self::load_salt_and_public(&k2v).await?;
// Create CryptoKeys struct from given keys
let public = secret.public_key();
let keys = CryptoKeys {
master: master.clone(),
secret: secret.clone(),
public,
};
// Check public key matches
if keys.public != expected_public {
bail!("Given public key doesn't match stored public key");
}
Ok(keys)
}
pub async fn add_password(
&self,
storage: &StorageCredentials,
user_secrets: &UserSecrets,
password: &str,
) -> Result<()> {
let k2v = storage.k2v_client()?;
let (ident_salt, _public) = Self::load_salt_and_public(&k2v).await?;
// Generate short password digest (= password identity)
let ident = argon2_kdf(&ident_salt, password.as_bytes(), 16)?;
// Generate salt for KDF
let mut kdf_salt = [0u8; 32];
thread_rng().fill(&mut kdf_salt);
// Calculate key for password secret box
let password_key = user_secrets.derive_password_key(&kdf_salt, password)?;
// Seal a secret box that contains our crypto keys
let password_sealed = seal(&self.serialize(), &password_key)?;
let password_sortkey = format!("password:{}", hex::encode(&ident));
let password_blob = [&kdf_salt[..], &password_sealed].concat();
// List existing passwords to overwrite existing entry if necessary
let ct = match k2v.read_item("keys", &password_sortkey).await {
Err(k2v_client::Error::NotFound) => None,
v => {
let entry = v?;
if entry.value.iter().any(|x| matches!(x, K2vValue::Value(_))) {
bail!("password already exists");
}
Some(entry.causality)
}
};
// Write values to storage
k2v.insert_batch(&[k2v_insert_single_key(
"keys",
&password_sortkey,
ct,
&password_blob,
)])
.await
.context("InsertBatch for new password")?;
Ok(())
}
pub async fn delete_password(
storage: &StorageCredentials,
password: &str,
allow_delete_all: bool,
) -> Result<()> {
let k2v = storage.k2v_client()?;
let (ident_salt, _public) = Self::load_salt_and_public(&k2v).await?;
// Generate short password digest (= password identity)
let ident = argon2_kdf(&ident_salt, password.as_bytes(), 16)?;
let password_sortkey = format!("password:{}", hex::encode(&ident));
// List existing passwords
let existing_passwords = Self::list_existing_passwords(&k2v).await?;
// Check password is there
let pw = existing_passwords
.get(&password_sortkey)
.ok_or(anyhow!("password does not exist"))?;
if !allow_delete_all && existing_passwords.len() < 2 {
bail!("No other password exists, not deleting last password.");
}
k2v.delete_item("keys", &password_sortkey, pw.causality.clone())
.await
.context("DeleteItem for password")?;
Ok(())
}
// ---- STORAGE UTIL ----
async fn check_uninitialized(
k2v: &K2vClient,
) -> Result<(Option<CausalityToken>, Option<CausalityToken>)> {
let params = k2v
.read_batch(&[
k2v_read_single_key("keys", "salt", true),
k2v_read_single_key("keys", "public", true),
])
.await
.context("ReadBatch for salt and public in check_uninitialized")?;
if params.len() != 2 {
bail!(
"Invalid response from k2v storage: {:?} (expected two items)",
params
);
}
if params[0].items.len() > 1 || params[1].items.len() > 1 {
bail!(
"invalid response from k2v storage: {:?} (several items in single_item read)",
params
);
}
let salt_ct = match params[0].items.iter().next() {
None => None,
Some((_, CausalValue { causality, value })) => {
if value.iter().any(|x| matches!(x, K2vValue::Value(_))) {
bail!("key storage already initialized");
}
Some(causality.clone())
}
};
let public_ct = match params[1].items.iter().next() {
None => None,
Some((_, CausalValue { causality, value })) => {
if value.iter().any(|x| matches!(x, K2vValue::Value(_))) {
bail!("key storage already initialized");
}
Some(causality.clone())
}
};
Ok((salt_ct, public_ct))
}
pub async fn load_salt_and_public(k2v: &K2vClient) -> Result<([u8; 32], PublicKey)> {
let mut params = k2v
.read_batch(&[
k2v_read_single_key("keys", "salt", false),
k2v_read_single_key("keys", "public", false),
])
.await
.context("ReadBatch for salt and public in load_salt_and_public")?;
if params.len() != 2 {
bail!(
"Invalid response from k2v storage: {:?} (expected two items)",
params
);
}
if params[0].items.len() != 1 || params[1].items.len() != 1 {
bail!("cryptographic keys not initialized for user");
}
// Retrieve salt from given response
let salt_vals = &mut params[0].items.iter_mut().next().unwrap().1.value;
if salt_vals.len() != 1 {
bail!("Multiple values for `salt`");
}
let salt: Vec<u8> = match &mut salt_vals[0] {
K2vValue::Value(v) => std::mem::take(v),
K2vValue::Tombstone => bail!("salt is a tombstone"),
};
if salt.len() != 32 {
bail!("`salt` is not 32 bytes long");
}
let mut salt_constlen = [0u8; 32];
salt_constlen.copy_from_slice(&salt);
// Retrieve public from given response
let public_vals = &mut params[1].items.iter_mut().next().unwrap().1.value;
if public_vals.len() != 1 {
bail!("Multiple values for `public`");
}
let public: Vec<u8> = match &mut public_vals[0] {
K2vValue::Value(v) => std::mem::take(v),
K2vValue::Tombstone => bail!("public is a tombstone"),
};
let public = PublicKey::from_slice(&public).ok_or(anyhow!("Invalid public key length"))?;
Ok((salt_constlen, public))
}
async fn list_existing_passwords(k2v: &K2vClient) -> Result<BTreeMap<String, CausalValue>> {
let mut res = k2v
.read_batch(&[BatchReadOp {
partition_key: "keys",
filter: Filter {
start: None,
end: None,
prefix: Some("password:"),
limit: None,
reverse: false,
},
conflicts_only: false,
tombstones: false,
single_item: false,
}])
.await
.context("ReadBatch for prefix password: in list_existing_passwords")?;
if res.len() != 1 {
bail!("unexpected k2v result: {:?}, expected one item", res);
}
Ok(res.pop().unwrap().items)
}
fn serialize(&self) -> [u8; 64] {
let mut res = [0u8; 64];
res[..32].copy_from_slice(self.master.as_ref());
res[32..].copy_from_slice(self.secret.as_ref());
res
}
fn deserialize(bytes: &[u8]) -> Result<Self> {
if bytes.len() != 64 {
bail!("Invalid length: {}, expected 64", bytes.len());
}
let master = Key::from_slice(&bytes[..32]).unwrap();
let secret = SecretKey::from_slice(&bytes[32..]).unwrap();
let public = secret.public_key();
Ok(Self {
master,
secret,
public,
})
}
}
impl UserSecrets {
fn derive_password_key_with(user_secret: &str, kdf_salt: &[u8], password: &str) -> Result<Key> {
let tmp = format!("{}\n\n{}", user_secret, password);
Ok(Key::from_slice(&argon2_kdf(kdf_salt, tmp.as_bytes(), 32)?).unwrap())
}
fn derive_password_key(&self, kdf_salt: &[u8], password: &str) -> Result<Key> {
Self::derive_password_key_with(&self.user_secret, kdf_salt, password)
}
fn try_open_encrypted_keys(
&self,
kdf_salt: &[u8],
password: &str,
encrypted_keys: &[u8],
) -> Result<Vec<u8>> {
let secrets_to_try =
std::iter::once(&self.user_secret).chain(self.alternate_user_secrets.iter());
for user_secret in secrets_to_try {
let password_key = Self::derive_password_key_with(user_secret, kdf_salt, password)?;
if let Ok(res) = open(encrypted_keys, &password_key) {
return Ok(res);
}
}
bail!("Unable to decrypt password blob.");
}
}
// ---- UTIL ----
pub fn argon2_kdf(salt: &[u8], password: &[u8], output_len: usize) -> Result<Vec<u8>> {
use argon2::{Algorithm, Argon2, ParamsBuilder, PasswordHasher, Version};
let mut params = ParamsBuilder::new();
params
.output_len(output_len)
.map_err(|e| anyhow!("Invalid output length: {}", e))?;
let params = params
.params()
.map_err(|e| anyhow!("Invalid argon2 params: {}", e))?;
let argon2 = Argon2::new(Algorithm::default(), Version::default(), params);
let salt = base64::encode_config(salt, base64::STANDARD_NO_PAD);
let hash = argon2
.hash_password(password, &salt)
.map_err(|e| anyhow!("Unable to hash: {}", e))?;
let hash = hash.hash.ok_or(anyhow!("Missing output"))?;
assert!(hash.len() == output_len);
Ok(hash.as_bytes().to_vec())
}
pub fn k2v_read_single_key<'a>(
partition_key: &'a str,
sort_key: &'a str,
tombstones: bool,
) -> BatchReadOp<'a> {
BatchReadOp {
partition_key,
filter: Filter {
start: Some(sort_key),
end: None,
prefix: None,
limit: None,
reverse: false,
},
conflicts_only: false,
tombstones,
single_item: true,
}
}
pub fn k2v_insert_single_key<'a>(
partition_key: &'a str,
sort_key: &'a str,
causality: Option<CausalityToken>,
value: impl AsRef<[u8]>,
) -> BatchInsertOp<'a> {
BatchInsertOp {
partition_key,
sort_key,
causality,
value: K2vValue::Value(value.as_ref().to_vec()),
}
}