use std::time::{Duration, Instant};
use anyhow::{anyhow, bail, Result};
use rand::prelude::*;
use serde::{Deserialize, Serialize};
use tokio::io::AsyncReadExt;
use k2v_client::{BatchDeleteOp, BatchReadOp, Filter, K2vClient, K2vValue};
use rusoto_s3::{
DeleteObjectRequest, GetObjectRequest, ListObjectsV2Request, PutObjectRequest, S3Client, S3,
};
use rusoto_signature::Region;
use crate::cryptoblob::*;
use crate::login::Credentials;
use crate::time::now_msec;
const SAVE_STATE_EVERY: usize = 64;
// Checkpointing interval constants: a checkpoint is not made earlier
// than CHECKPOINT_INTERVAL time after the last one, and is not made
// if there are less than CHECKPOINT_MIN_OPS new operations since last one.
const CHECKPOINT_INTERVAL: Duration = Duration::from_secs(60);
const CHECKPOINT_MIN_OPS: usize = 4;
// HYPOTHESIS: processes are able to communicate in a synchronous
// fashion in times that are small compared to CHECKPOINT_INTERVAL.
// More precisely, if a process tried to save an operation within the last
// CHECKPOINT_INTERVAL, we are sure to read it from storage if it was
// successfully saved (and if we don't read it, it means it has been
// definitely discarded due to an error).
// Keep at least two checkpoints, here three, to avoid race conditions
// between processes doing .checkpoint() and those doing .sync()
const CHECKPOINTS_TO_KEEP: usize = 3;
pub trait BayouState:
Default + Clone + Serialize + for<'de> Deserialize<'de> + Send + Sync + 'static
{
type Op: Clone + Serialize + for<'de> Deserialize<'de> + std::fmt::Debug + Send + Sync + 'static;
fn apply(&self, op: &Self::Op) -> Self;
}
pub struct Bayou<S: BayouState> {
bucket: String,
path: String,
key: Key,
k2v: K2vClient,
s3: S3Client,
checkpoint: (Timestamp, S),
history: Vec<(Timestamp, S::Op, Option<S>)>,
last_sync: Option<Instant>,
last_try_checkpoint: Option<Instant>,
}
impl<S: BayouState> Bayou<S> {
pub fn new(creds: &Credentials, path: String) -> Result<Self> {
let k2v_client = creds.k2v_client()?;
let s3_client = creds.s3_client()?;
Ok(Self {
bucket: creds.bucket().to_string(),
path,
key: creds.keys.master.clone(),
k2v: k2v_client,
s3: s3_client,
checkpoint: (Timestamp::zero(), S::default()),
history: vec![],
last_sync: None,
last_try_checkpoint: None,
})
}
/// Re-reads the state from persistent storage backend
pub async fn sync(&mut self) -> Result<()> {
// 1. List checkpoints
let checkpoints = self.list_checkpoints().await?;
eprintln!("(sync) listed checkpoints: {:?}", checkpoints);
// 2. Load last checkpoint if different from currently used one
let checkpoint = if let Some((ts, key)) = checkpoints.last() {
if *ts == self.checkpoint.0 {
(*ts, None)
} else {
eprintln!("(sync) loading checkpoint: {}", key);
let mut gor = GetObjectRequest::default();
gor.bucket = self.bucket.clone();
gor.key = key.to_string();
let obj_res = self.s3.get_object(gor).await?;
let obj_body = obj_res.body.ok_or(anyhow!("Missing object body"))?;
let mut buf = Vec::with_capacity(obj_res.content_length.unwrap_or(128) as usize);
obj_body.into_async_read().read_to_end(&mut buf).await?;
eprintln!("(sync) checkpoint body length: {}", buf.len());
let ck = open_deserialize::<S>(&buf, &self.key)?;
(*ts, Some(ck))
}
} else {
(Timestamp::zero(), None)
};
if self.checkpoint.0 > checkpoint.0 {
bail!("Existing checkpoint is more recent than stored one");
}
if let Some(ck) = checkpoint.1 {
eprintln!(
"(sync) updating checkpoint to loaded state at {:?}",
checkpoint.0
);
self.checkpoint = (checkpoint.0, ck);
};
// remove from history events before checkpoint
self.history = std::mem::take(&mut self.history)
.into_iter()
.skip_while(|(ts, _, _)| *ts < self.checkpoint.0)
.collect();
// 3. List all operations starting from checkpoint
let ts_ser = self.checkpoint.0.serialize();
eprintln!("(sync) looking up operations starting at {}", ts_ser);
let ops_map = self
.k2v
.read_batch(&[BatchReadOp {
partition_key: &self.path,
filter: Filter {
start: Some(&ts_ser),
end: None,
prefix: None,
limit: None,
reverse: false,
},
single_item: false,
conflicts_only: false,
tombstones: false,
}])
.await?
.into_iter()
.next()
.ok_or(anyhow!("Missing K2V result"))?
.items;
let mut ops = vec![];
for (tsstr, val) in ops_map {
let ts = Timestamp::parse(&tsstr)
.ok_or(anyhow!("Invalid operation timestamp: {}", tsstr))?;
if val.value.len() != 1 {
bail!("Invalid operation, has {} values", val.value.len());
}
match &val.value[0] {
K2vValue::Value(v) => {
let op = open_deserialize::<S::Op>(&v, &self.key)?;
eprintln!("(sync) operation {}: {} {:?}", tsstr, base64::encode(v), op);
ops.push((ts, op));
}
K2vValue::Tombstone => {
unreachable!();
}
}
}
ops.sort_by_key(|(ts, _)| *ts);
eprintln!("(sync) {} operations", ops.len());
if ops.len() < self.history.len() {
bail!("Some operations have disappeared from storage!");
}
// 4. Check that first operation has same timestamp as checkpoint (if not zero)
if self.checkpoint.0 != Timestamp::zero() && ops[0].0 != self.checkpoint.0 {
bail!(
"First operation in listing doesn't have timestamp that corresponds to checkpoint"
);
}
// 5. Apply all operations in order
// Hypothesis: before the loaded checkpoint, operations haven't changed
// between what's on storage and what we used to calculate the state in RAM here.
let i0 = self
.history
.iter()
.enumerate()
.zip(ops.iter())
.skip_while(|((_, (ts1, _, _)), (ts2, _))| ts1 == ts2)
.map(|((i, _), _)| i)
.next()
.unwrap_or(self.history.len());
if ops.len() > i0 {
// Remove operations from first position where histories differ
self.history.truncate(i0);
// Look up last calculated state which we have saved and start from there.
let mut last_state = (0, &self.checkpoint.1);
for (i, (_, _, state_opt)) in self.history.iter().enumerate().rev() {
if let Some(state) = state_opt {
last_state = (i + 1, state);
break;
}
}
// Calculate state at the end of this common part of the history
let mut state = last_state.1.clone();
for (_, op, _) in self.history[last_state.0..].iter() {
state = state.apply(op);
}
// Now, apply all operations retrieved from storage after the common part
for (ts, op) in ops.drain(i0..) {
state = state.apply(&op);
if (self.history.len() + 1) % SAVE_STATE_EVERY == 0 {
self.history.push((ts, op, Some(state.clone())));
} else {
self.history.push((ts, op, None));
}
}
// Always save final state as result of last operation
self.history.last_mut().unwrap().2 = Some(state);
}
self.last_sync = Some(Instant::now());
Ok(())
}
async fn check_recent_sync(&mut self) -> Result<()> {
match self.last_sync {
Some(t) if (Instant::now() - t) < CHECKPOINT_INTERVAL / 10 => Ok(()),
_ => self.sync().await,
}
}
/// Applies a new operation on the state. Once this function returns,
/// the option has been safely persisted to storage backend
pub async fn push(&mut self, op: S::Op) -> Result<()> {
self.check_recent_sync().await?;
eprintln!("(push) add operation: {:?}", op);
let ts = Timestamp::after(
self.history
.last()
.map(|(ts, _, _)| ts)
.unwrap_or(&self.checkpoint.0),
);
self.k2v
.insert_item(
&self.path,
&ts.serialize(),
seal_serialize(&op, &self.key)?,
None,
)
.await?;
let new_state = self.state().apply(&op);
self.history.push((ts, op, Some(new_state)));
// Clear previously saved state in history if not required
let hlen = self.history.len();
if hlen >= 2 && (hlen - 1) % SAVE_STATE_EVERY != 0 {
self.history[hlen - 2].2 = None;
}
self.checkpoint().await?;
Ok(())
}
/// Save a new checkpoint if previous checkpoint is too old
pub async fn checkpoint(&mut self) -> Result<()> {
match self.last_try_checkpoint {
Some(ts) if Instant::now() - ts < CHECKPOINT_INTERVAL / 10 => Ok(()),
_ => {
let res = self.checkpoint_internal().await;
if res.is_ok() {
self.last_try_checkpoint = Some(Instant::now());
}
res
}
}
}
async fn checkpoint_internal(&mut self) -> Result<()> {
self.check_recent_sync().await?;
// Check what would be the possible time for a checkpoint in the history we have
let now = now_msec() as i128;
let i_cp = match self
.history
.iter()
.enumerate()
.rev()
.skip_while(|(_, (ts, _, _))| {
(now - ts.msec as i128) < CHECKPOINT_INTERVAL.as_millis() as i128
})
.map(|(i, _)| i)
.next()
{
Some(i) => i,
None => {
eprintln!("(cp) Oldest operation is too recent to trigger checkpoint");
return Ok(());
}
};
if i_cp < CHECKPOINT_MIN_OPS {
eprintln!("(cp) Not enough old operations to trigger checkpoint");
return Ok(());
}
let ts_cp = self.history[i_cp].0;
eprintln!(
"(cp) we could checkpoint at time {} (index {} in history)",
ts_cp.serialize(),
i_cp
);
// Check existing checkpoints: if last one is too recent, don't checkpoint again.
let existing_checkpoints = self.list_checkpoints().await?;
eprintln!("(cp) listed checkpoints: {:?}", existing_checkpoints);
if let Some(last_cp) = existing_checkpoints.last() {
if (ts_cp.msec as i128 - last_cp.0.msec as i128)
< CHECKPOINT_INTERVAL.as_millis() as i128
{
eprintln!(
"(cp) last checkpoint is too recent: {}, not checkpointing",
last_cp.0.serialize()
);
return Ok(());
}
}
eprintln!("(cp) saving checkpoint at {}", ts_cp.serialize());
// Calculate state at time of checkpoint
let mut last_known_state = (0, &self.checkpoint.1);
for (i, (_, _, st)) in self.history[..i_cp].iter().enumerate() {
if let Some(s) = st {
last_known_state = (i + 1, s);
}
}
let mut state_cp = last_known_state.1.clone();
for (_, op, _) in self.history[last_known_state.0..i_cp].iter() {
state_cp = state_cp.apply(op);
}
// Serialize and save checkpoint
let cryptoblob = seal_serialize(&state_cp, &self.key)?;
eprintln!("(cp) checkpoint body length: {}", cryptoblob.len());
let mut por = PutObjectRequest::default();
por.bucket = self.bucket.clone();
por.key = format!("{}/checkpoint/{}", self.path, ts_cp.serialize());
por.body = Some(cryptoblob.into());
self.s3.put_object(por).await?;
// Drop old checkpoints (but keep at least CHECKPOINTS_TO_KEEP of them)
let ecp_len = existing_checkpoints.len();
if ecp_len + 1 > CHECKPOINTS_TO_KEEP {
let last_to_keep = ecp_len + 1 - CHECKPOINTS_TO_KEEP;
// Delete blobs
for (_ts, key) in existing_checkpoints[..last_to_keep].iter() {
eprintln!("(cp) drop old checkpoint {}", key);
let mut dor = DeleteObjectRequest::default();
dor.bucket = self.bucket.clone();
dor.key = key.to_string();
self.s3.delete_object(dor).await?;
}
// Delete corresponding range of operations
let ts_ser = existing_checkpoints[last_to_keep].0.serialize();
self.k2v
.delete_batch(&[BatchDeleteOp {
partition_key: &self.path,
prefix: None,
start: None,
end: Some(&ts_ser),
single_item: false,
}])
.await?;
}
Ok(())
}
pub fn state(&self) -> &S {
if let Some(last) = self.history.last() {
last.2.as_ref().unwrap()
} else {
&self.checkpoint.1
}
}
// ---- INTERNAL ----
async fn list_checkpoints(&self) -> Result<Vec<(Timestamp, String)>> {
let prefix = format!("{}/checkpoint/", self.path);
let mut lor = ListObjectsV2Request::default();
lor.bucket = self.bucket.clone();
lor.max_keys = Some(1000);
lor.prefix = Some(prefix.clone());
let checkpoints_res = self.s3.list_objects_v2(lor).await?;
let mut checkpoints = vec![];
for object in checkpoints_res.contents.unwrap_or_default() {
if let Some(key) = object.key {
if let Some(ckid) = key.strip_prefix(&prefix) {
if let Some(ts) = Timestamp::parse(ckid) {
checkpoints.push((ts, key));
}
}
}
}
checkpoints.sort_by_key(|(ts, _)| *ts);
Ok(checkpoints)
}
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)]
pub struct Timestamp {
pub msec: u64,
pub rand: u64,
}
impl Timestamp {
pub fn now() -> Self {
let mut rng = thread_rng();
Self {
msec: now_msec(),
rand: rng.gen::<u64>(),
}
}
pub fn after(other: &Self) -> Self {
let mut rng = thread_rng();
Self {
msec: std::cmp::max(now_msec(), other.msec + 1),
rand: rng.gen::<u64>(),
}
}
pub fn zero() -> Self {
Self { msec: 0, rand: 0 }
}
pub fn serialize(&self) -> String {
let mut bytes = [0u8; 16];
bytes[0..8].copy_from_slice(&u64::to_be_bytes(self.msec));
bytes[8..16].copy_from_slice(&u64::to_be_bytes(self.rand));
hex::encode(&bytes)
}
pub fn parse(v: &str) -> Option<Self> {
let bytes = hex::decode(v).ok()?;
if bytes.len() != 16 {
return None;
}
Some(Self {
msec: u64::from_be_bytes(bytes[0..8].try_into().unwrap()),
rand: u64::from_be_bytes(bytes[8..16].try_into().unwrap()),
})
}
}