open Core open Main module G = struct exception Invalid_pos type loc1 = int * int type loc = loc1 * loc1 type c = (* P1 <-> X || P2 <-> O *) | Empty | X | O | T type 'a r = 'a * 'a * 'a type 'a morpion = ('a r * 'a r * 'a r) * c (* On enregistre dans une grille de morpion le résultat pour cette grille : non attribué (Empty), X, O, ou nul (T) Pour y acceder, utiliser reduct : 'a morpion -> c *) let reduct (_, r) = r type game = game_status * c morpion morpion * loc1 option (* all_p1 : loc1 list *) let all_p1 = [ 1,1; 1,2; 1,3; 2,1; 2,2; 2,3; 3,1; 3,2; 3,3 ] (* all_w_s : loc1 list list *) let all_w_p1l = [ [ 1,1; 1,2; 1,3 ]; [ 2,1; 2,2; 2,3 ]; [ 3,1; 3,2; 3,3 ]; [ 1,1; 2,1; 3,1 ]; [ 1,2; 2,2; 3,2 ]; [ 1,3; 2,3; 3,3 ]; [ 1,1; 2,2; 3,3 ]; [ 1,3; 2,2; 3,1 ]; ] (* encode : loc -> string *) let encode ((xg, yg), (xp, yp)) = Format.sprintf "%d %d %d %d" xg yg xp yp (* decode : string -> loc *) let decode s = Scanf.sscanf s "%d %d %d %d" (fun xg yg xp yp -> (xg, yg), (xp, yp)) (* getp0 : ('a, 'a, 'a) -> int -> 'a *) let getp0 (a, b, c) x = match x with | 1 -> a | 2 -> b | 3 -> c | _ -> raise Invalid_pos (* getp1 : 'a morpion -> loc1 -> 'a *) let getp1 (m, _) (px, py) = getp0 (getp0 m px) py (* getp : 'a morpion morpion -> loc2 -> 'a *) let getp m (pg, pp) = getp1 (getp1 m pg) pp (* reduce_m : ('a -> c) -> 'a morpion -> c *) let reduce_m rf m = match all_w_p1l |> List.map (List.map (fun x -> rf (getp1 m x))) |> List.map (function | l when List.for_all ((=) X) l -> X | l when List.for_all ((=) O) l -> O | l when List.exists ((=) X) l && List.exists ((=) O) l -> T | l when List.exists ((=) T) l -> T | _ -> Empty) with | l when List.exists ((=) X) l -> X | l when List.exists ((=) O) l -> O | l when List.exists ((=) Empty) l -> Empty | _ -> T (* setp0 : ('a, 'a, 'a) -> int -> 'a -> ('a, 'a, 'a) *) let setp0 (a, b, c) x v = match x with | 1 -> (v, b, c) | 2 -> (a, v, c) | 3 -> (a, b, v) | _ -> raise Invalid_pos (* setp1 : 'a morpion -> loc1 -> 'a -> ('a -> 'c) -> 'a morpion *) let setp1 (m, r) (px, py) v rf = let k = setp0 m px (setp0 (getp0 m px) py v) in (k, if r = Empty then reduce_m rf (k, r) else r) (* pourquoi ce if ? parce que si quelqu'un a déjà gagné un petit morpion, alors même si l'adversaire aligne trois cases dedans APRES, le petit morpion reste attribué à la même personne. *) let setp1p (m, r) (px, py) v = setp1 (m, r) (px, py) v (fun x -> x) (* setp : 'a morpion morpion -> loc2 -> 'a -> 'a morpion morpion *) let setp m (pg, pp) v = let im = setp1p (getp1 m pg) pp v in let om = setp1 m pg im reduct in om (* r : 'a -> ('a, 'a, 'a) *) let r x = (x, x, x) (* *************************** *) (* Début du code intéressant ! *) let id = "morpion_rec" let name = "Morpion récursif!" let new_game = TurnOf P1, (r (r (r (r Empty), Empty)), Empty), None let full_pm m = List.for_all (fun p -> getp1 m p <> Empty) all_p1 let possibilities (s, m, lg) = let pg_poss = match lg with | None -> all_p1 | Some x -> [x] in List.flatten (List.map (fun pg -> all_p1 |> List.filter (fun pp -> getp m (pg, pp) = Empty) |> List.map (fun pp -> (pg, pp))) pg_poss) |> List.map encode let play (gs, m, pgo) act = let (pg, pp) = decode act in match gs with | TurnOf player when (match pgo with | None -> true | Some x -> pg = x) && getp m (pg, pp) = Empty -> let op = other_player player in let new_m = setp m (pg, pp) (match player with P1 -> X | P2 -> O) in let new_s = match reduct new_m with | Empty -> TurnOf op | X -> Won P1 | O -> Won P2 | T -> Tie in (new_s, new_m, if full_pm (getp1 new_m pp) then None else Some pp) | TurnOf x -> (Eliminated x, m, pgo) | _ -> raise (Eliminated_ex "not someone's turn!") let s (s, _, _) = s (* ************************* *) (* Visualisation graphique ! *) open Graphics open Main open G_util let subpos (x1, y1, x2, y2) (l, c) = let dx, dy = (x2 - x1) / 3, (y2 - y1) / 3 in x1 + (l-1) * dx, y1 + (c-1) * dy, x1 + l * dx, y1 + c * dy let margin (x1, y1, x2, y2) m = (x1+m, y1+m, x2-m, y2-m) let disp_l lw pos = let x1, y1, x2, y2 = pos in function | X -> set_line_width lw; set_color p1c; draw_segments [| x1, y1, x2, y2; x1, y2, x2, y1 |]; set_line_width 1 | O -> set_line_width lw; set_color p2c; draw_circle ((x1+x2)/2) ((y1+y2)/2) (min (x2-x1) (y2-y1) / 2); set_line_width 1 | _ -> () let disp_r sdf box mor = let x1, y1, x2, y2 = box in let dx, dy = (x2 - x1) / 3, (y2 - y1) / 3 in let x12, x23 = x1 + dx, x1 + 2 * dx in let y12, y23 = y1 + dy, y1 + 2 * dy in set_color black; draw_segments [| x12, y1, x12, y2; x23, y1, x23, y2; x1, y12, x2, y12; x1, y23, x2, y23 |]; List.iter (fun p -> sdf (margin (subpos box p) 6) (getp1 mor p)) all_p1; disp_l 2 box (reduct mor) let display_game (s, mor, q) (pn1, pn2) = let cx, cy = center() in let box = cx - 200, cy - 200, cx + 200, cy + 200 in disp_r (disp_r (disp_l 1)) box mor; begin match q, s with | Some p, TurnOf player -> let x1, y1, x2, y2 = margin (subpos box p) 3 in set_color (pc player); draw_rect x1 y1 (x2-x1) (y2-y1) | _ -> () end end