open Core
open Main
module G = struct
exception Invalid_pos
type loc1 = int * int
type loc = loc1 * loc1
type c = (* P1 <-> X || P2 <-> O *)
| Empty
| X
| O
| T
type 'a r = 'a * 'a * 'a
type 'a morpion = ('a r * 'a r * 'a r) * c
(* On enregistre dans une grille de morpion le résultat
pour cette grille : non attribué (Empty), X, O, ou nul (T)
Pour y acceder, utiliser reduct : 'a morpion -> c *)
let reduct (_, r) = r
type game = game_status * c morpion morpion * loc1 option
(* all_p1 : loc1 list *)
let all_p1 = [ 1,1; 1,2; 1,3; 2,1; 2,2; 2,3; 3,1; 3,2; 3,3 ]
(* all_w_s : loc1 list list *)
let all_w_p1l = [
[ 1,1; 1,2; 1,3 ];
[ 2,1; 2,2; 2,3 ];
[ 3,1; 3,2; 3,3 ];
[ 1,1; 2,1; 3,1 ];
[ 1,2; 2,2; 3,2 ];
[ 1,3; 2,3; 3,3 ];
[ 1,1; 2,2; 3,3 ];
[ 1,3; 2,2; 3,1 ];
]
(* encode : loc -> string *)
let encode ((xg, yg), (xp, yp)) =
Format.sprintf "%d %d %d %d" xg yg xp yp
(* decode : string -> loc *)
let decode s =
Scanf.sscanf s "%d %d %d %d"
(fun xg yg xp yp -> (xg, yg), (xp, yp))
(* getp0 : ('a, 'a, 'a) -> int -> 'a *)
let getp0 (a, b, c) x = match x with
| 1 -> a | 2 -> b | 3 -> c
| _ -> raise Invalid_pos
(* getp1 : 'a morpion -> loc1 -> 'a *)
let getp1 (m, _) (px, py) =
getp0 (getp0 m px) py
(* getp : 'a morpion morpion -> loc2 -> 'a *)
let getp m (pg, pp) =
getp1 (getp1 m pg) pp
(* reduce_m : ('a -> c) -> 'a morpion -> c *)
let reduce_m rf m =
match
all_w_p1l
|> List.map (List.map (fun x -> rf (getp1 m x)))
|> List.map (function
| l when List.for_all ((=) X) l -> X
| l when List.for_all ((=) O) l -> O
| l when List.exists ((=) X) l && List.exists ((=) O) l -> T
| l when List.exists ((=) T) l -> T
| _ -> Empty)
with
| l when List.exists ((=) X) l -> X
| l when List.exists ((=) O) l -> O
| l when List.exists ((=) Empty) l -> Empty
| _ -> T
(* setp0 : ('a, 'a, 'a) -> int -> 'a -> ('a, 'a, 'a) *)
let setp0 (a, b, c) x v = match x with
| 1 -> (v, b, c)
| 2 -> (a, v, c)
| 3 -> (a, b, v)
| _ -> raise Invalid_pos
(* setp1 : 'a morpion -> loc1 -> 'a -> ('a -> 'c) -> 'a morpion *)
let setp1 (m, r) (px, py) v rf =
let k = setp0 m px (setp0 (getp0 m px) py v) in
(k, if r = Empty then reduce_m rf (k, r) else r)
(* pourquoi ce if ? parce que si quelqu'un a déjà gagné un petit morpion,
alors même si l'adversaire aligne trois cases dedans APRES,
le petit morpion reste attribué à la même personne. *)
(* setp : 'a morpion morpion -> loc2 -> 'a -> 'a morpion morpion *)
let setp m (pg, pp) v =
let im = setp1 (getp1 m pg) pp v (fun x -> x) in
let om = setp1 m pg im reduct in
om
(* r : 'a -> ('a, 'a, 'a) *)
let r x = (x, x, x)
(* *************************** *)
(* Début du code intéressant ! *)
let id = "morpion_rec"
let name = "Morpion récursif!"
let new_game =
TurnOf P1, (r (r (r (r Empty), Empty)), Empty), None
let full_pm m =
List.for_all (fun p -> getp1 m p <> Empty) all_p1
let possibilities (s, m, lg) =
let pg_poss = match lg with
| None -> all_p1
| Some x -> [x]
in
List.flatten
(List.map (fun pg ->
all_p1
|> List.filter (fun pp -> getp m (pg, pp) = Empty)
|> List.map (fun pp -> (pg, pp)))
pg_poss)
|> List.map encode
let play (gs, m, pgo) act =
let (pg, pp) = decode act in
match gs with
| TurnOf player when
(match pgo with
| None -> true
| Some x -> pg = x)
&& getp m (pg, pp) = Empty
->
let op = other_player player in
let new_m = setp m (pg, pp) (match player with P1 -> X | P2 -> O) in
let new_s = match reduct new_m with
| Empty -> TurnOf op
| X -> Won P1
| O -> Won P2
| T -> Tie
in
(new_s, new_m, if full_pm (getp1 new_m pp) then None else Some pp)
| TurnOf x -> (Eliminated x, m, pgo)
| _ -> raise (Eliminated_ex "not someone's turn!")
let s (s, _, _) = s
(* ************************* *)
(* Visualisation graphique ! *)
open Graphics
open Main
open G_util
let subpos (x1, y1, x2, y2) (l, c) =
let dx, dy = (x2 - x1) / 3, (y2 - y1) / 3 in
x1 + (l-1) * dx, y1 + (c-1) * dy, x1 + l * dx, y1 + c * dy
let margin (x1, y1, x2, y2) m =
(x1+m, y1+m, x2-m, y2-m)
let disp_l lw pos =
let x1, y1, x2, y2 = pos in
function
| X ->
set_line_width lw;
set_color p1c;
draw_segments
[| x1, y1, x2, y2;
x1, y2, x2, y1 |];
set_line_width 1
| O ->
set_line_width lw;
set_color p2c;
draw_circle ((x1+x2)/2) ((y1+y2)/2) (min (x2-x1) (y2-y1) / 2);
set_line_width 1
| _ -> ()
let disp_r sdf box mor =
let x1, y1, x2, y2 = box in
let dx, dy = (x2 - x1) / 3, (y2 - y1) / 3 in
let x12, x23 = x1 + dx, x1 + 2 * dx in
let y12, y23 = y1 + dy, y1 + 2 * dy in
set_color black;
draw_segments
[| x12, y1, x12, y2;
x23, y1, x23, y2;
x1, y12, x2, y12;
x1, y23, x2, y23 |];
List.iter (fun p -> sdf (margin (subpos box p) 6) (getp1 mor p)) all_p1;
disp_l 2 box (reduct mor)
let display_game (s, mor, q) (pn1, pn2) =
let cx, cy = center() in
let box = cx - 200, cy - 200, cx + 200, cy + 200 in
disp_r (disp_r (disp_l 1)) box mor;
begin match q, s with
| Some p, TurnOf player ->
let x1, y1, x2, y2 = margin (subpos box p) 3 in
set_color (pc player);
draw_rect x1 y1 (x2-x1) (y2-y1)
| _ -> ()
end
end