#include #include #include #include typedef union region_descriptor { struct { union region_descriptor *next; } unused_descriptor; struct { void* addr; size_t size; union region_descriptor *next_by_size, *first_bigger; union region_descriptor *next_by_addr; } free; struct { region_info_t i; union region_descriptor *next_by_addr; } used; } descriptor_t; #define N_RESERVE_DESCRIPTORS 2 // always keep at least 2 unused descriptors #define N_BASE_DESCRIPTORS 12 // pre-allocate memory for 12 descriptors static descriptor_t base_descriptors[N_BASE_DESCRIPTORS]; static descriptor_t *first_unused_descriptor; uint32_t n_unused_descriptors; static descriptor_t *first_free_region_by_addr, *first_free_region_by_size; static descriptor_t *first_used_region; STATIC_MUTEX(ra_mutex); // region allocator mutex // ========================================================= // // HELPER FUNCTIONS FOR THE MANIPULATION OF THE REGION LISTS // // ========================================================= // static void add_unused_descriptor(descriptor_t *d) { n_unused_descriptors++; d->unused_descriptor.next = first_unused_descriptor; first_unused_descriptor = d; } static descriptor_t *get_unused_descriptor() { descriptor_t *r = first_unused_descriptor; if (r != 0) { first_unused_descriptor = r->unused_descriptor.next; n_unused_descriptors--; } return r; } static void remove_free_region(descriptor_t *d) { if (first_free_region_by_size == d) { first_free_region_by_size = d->free.next_by_size; } else { for (descriptor_t *i = first_free_region_by_size; i != 0; i = i->free.next_by_size) { if (i->free.next_by_size == d) { i->free.next_by_size = d->free.next_by_size; break; } } } if (first_free_region_by_addr == d) { first_free_region_by_addr = d->free.next_by_addr; } else { for (descriptor_t *i = first_free_region_by_addr; i != 0; i = i->free.next_by_addr) { if (i->free.next_by_addr == d) { i->free.next_by_addr = d->free.next_by_addr; break; } } } } static void add_free_region(descriptor_t *d) { /*dbg_printf("Add free region 0x%p - 0x%p\n", d->free.addr, d->free.size + d->free.addr);*/ // Find position of region in address-ordered list // Possibly concatenate free region descriptor_t *i = first_free_region_by_addr; if (i == 0) { ASSERT(first_free_region_by_size == 0); first_free_region_by_addr = first_free_region_by_size = d; d->free.next_by_size = d->free.first_bigger = d->free.next_by_addr = 0; return; } else if (d->free.addr + d->free.size == i->free.addr) { // concatenate d . i remove_free_region(i); d->free.size += i->free.size; add_unused_descriptor(i); add_free_region(d); return; } else if (i->free.addr > d->free.addr) { // insert before i d->free.next_by_addr = i; first_free_region_by_addr = d; } else { while (i != 0) { ASSERT(d->free.addr > i->free.addr); if (i->free.addr + i->free.size == d->free.addr) { // concatenate i . d remove_free_region(i); i->free.size += d->free.size; add_unused_descriptor(d); add_free_region(i); return; } else if (i->free.next_by_addr == 0 || i->free.next_by_addr->free.addr > d->free.addr) { d->free.next_by_addr = i->free.next_by_addr; i->free.next_by_addr = d; break; } else if (d->free.addr + d->free.size == i->free.next_by_addr->free.addr) { // concatenate d . i->next_by_addr descriptor_t *j = i->free.next_by_addr; remove_free_region(j); d->free.size += j->free.size; add_unused_descriptor(j); add_free_region(d); return; } else { // continue i = i->free.next_by_addr; } } } // Now add it in size-ordered list i = first_free_region_by_size; ASSERT(i != 0); if (d->free.size <= i->free.size) { d->free.next_by_size = i; d->free.first_bigger = (i->free.size > d->free.size ? i : i->free.first_bigger); first_free_region_by_size = d; } else { while (i != 0) { ASSERT(d->free.size > i->free.size); if (i->free.next_by_size == 0) { d->free.next_by_size = 0; d->free.first_bigger = 0; i->free.next_by_size = d; if (d->free.size > i->free.size) i->free.first_bigger = d; break; } else if (i->free.next_by_size->free.size >= d->free.size) { d->free.next_by_size = i->free.next_by_size; d->free.first_bigger = (i->free.next_by_size->free.size > d->free.size ? i->free.next_by_size : i->free.next_by_size->free.first_bigger); i->free.next_by_size = d; if (d->free.size > i->free.size) i->free.first_bigger = d; break; } else { // continue i = i->free.next_by_size; } } } } static descriptor_t *find_used_region(void* addr) { for (descriptor_t *i = first_used_region; i != 0; i = i->used.next_by_addr) { if (addr >= i->used.i.addr && addr < i->used.i.addr + i->used.i.size) return i; if (i->used.i.addr > addr) break; } return 0; } static void add_used_region(descriptor_t *d) { descriptor_t *i = first_used_region; ASSERT(i->used.i.addr < d->used.i.addr); // first region by address is never free while (i != 0) { ASSERT(i->used.i.addr < d->used.i.addr); if (i->used.next_by_addr == 0 || i->used.next_by_addr->used.i.addr > d->used.i.addr) { d->used.next_by_addr = i->used.next_by_addr; i->used.next_by_addr = d; return; } else { i = i->used.next_by_addr; } } ASSERT(false); } static void remove_used_region(descriptor_t *d) { if (first_used_region == d) { first_used_region = d->used.next_by_addr; } else { for (descriptor_t *i = first_used_region; i != 0; i = i->used.next_by_addr) { if (i->used.i.addr > d->used.i.addr) break; if (i->used.next_by_addr == d) { i->used.next_by_addr = d->used.next_by_addr; break; } } } } // =============== // // THE ACTUAL CODE // // =============== // void region_allocator_init(void* kernel_data_end) { n_unused_descriptors = 0; first_unused_descriptor = 0; for (int i = 0; i < N_BASE_DESCRIPTORS; i++) { add_unused_descriptor(&base_descriptors[i]); } descriptor_t *f0 = get_unused_descriptor(); f0->free.addr = (void*)PAGE_ALIGN_UP(kernel_data_end); f0->free.size = ((void*)LAST_KERNEL_ADDR - f0->free.addr); f0->free.next_by_size = 0; f0->free.first_bigger = 0; first_free_region_by_size = first_free_region_by_addr = f0; descriptor_t *u0 = get_unused_descriptor(); u0->used.i.addr = (void*)K_HIGHHALF_ADDR; u0->used.i.size = PAGE_ALIGN_UP(kernel_data_end) - K_HIGHHALF_ADDR; u0->used.i.type = REGION_T_KERNEL_BASE; u0->used.i.pf = 0; u0->used.next_by_addr = 0; first_used_region = u0; } static void region_free_inner(void* addr) { descriptor_t *d = find_used_region(addr); if (d == 0) return; region_info_t i = d->used.i; remove_used_region(d); d->free.addr = i.addr; d->free.size = i.size; add_free_region(d); } void region_free(void* addr) { mutex_lock(&ra_mutex); region_free_inner(addr); mutex_unlock(&ra_mutex); } static void* region_alloc_inner(size_t size, uint32_t type, page_fault_handler_t pf, bool use_reserve) { size = PAGE_ALIGN_UP(size); for (descriptor_t *i = first_free_region_by_size; i != 0; i = i->free.first_bigger) { if (i->free.size >= size) { // region i is the one we want to allocate in descriptor_t *x = 0; if (i->free.size > size) { if (n_unused_descriptors <= N_RESERVE_DESCRIPTORS && !use_reserve) { return 0; } // this assert basically means that the allocation function // is called less than N_RESERVE_DESCRIPTORS times with // the use_reserve flag before more descriptors // are allocated. x = get_unused_descriptor(); ASSERT(x != 0); x->free.size = i->free.size - size; if (size >= 0x4000) { x->free.addr = i->free.addr + size; } else { x->free.addr = i->free.addr; i->free.addr += x->free.size; } } // do the allocation remove_free_region(i); if (x != 0) add_free_region(x); void* addr = i->free.addr; i->used.i.addr = addr; i->used.i.size = size; i->used.i.type = type; i->used.i.pf = pf; add_used_region(i); return addr; } } return 0; //No big enough block found } void* region_alloc(size_t size, uint32_t type, page_fault_handler_t pf) { void* result = 0; mutex_lock(&ra_mutex); if (n_unused_descriptors <= N_RESERVE_DESCRIPTORS) { uint32_t frame = frame_alloc(1); if (frame == 0) goto try_anyway; void* descriptor_region = region_alloc_inner(PAGE_SIZE, REGION_T_DESCRIPTORS, 0, true); ASSERT(descriptor_region != 0); int error = pd_map_page(descriptor_region, frame, 1); if (error) { // this can happen if we weren't able to allocate a frame for // a new pagetable frame_free(frame, 1); region_free_inner(descriptor_region); goto try_anyway; } for (descriptor_t *d = (descriptor_t*)descriptor_region; (void*)(d+1) <= (descriptor_region + PAGE_SIZE); d++) { add_unused_descriptor(d); } } try_anyway: // even if we don't have enough unused descriptors, we might find // a free region that has exactly the right size and therefore // does not require splitting, so we try the allocation in all cases result = region_alloc_inner(size, type, pf, false); mutex_unlock(&ra_mutex); return result; } region_info_t *find_region(void* addr) { region_info_t *r = 0; mutex_lock(&ra_mutex); descriptor_t *d = find_used_region(addr); if (d != 0) r = &d->used.i; mutex_unlock(&ra_mutex); return r; } // ========================================================= // // HELPER FUNCTIONS : SIMPLE PF HANDLERS ; FREEING FUNCTIONS // // ========================================================= // void default_allocator_pf_handler(pagedir_t *pd, struct region_info *r, void* addr) { ASSERT(pd_get_frame(addr) == 0); // if error is of another type (RO, protected), we don't do anyting uint32_t f = frame_alloc(1); if (f == 0) PANIC("Out Of Memory"); int error = pd_map_page(addr, f, 1); if (error) PANIC("Could not map frame (OOM)"); } void region_free_unmap_free(void* ptr) { region_info_t *i = find_region(ptr); ASSERT(i != 0); for (void* x = i->addr; x < i->addr + i->size; x += PAGE_SIZE) { uint32_t f = pd_get_frame(x); if (f != 0) { pd_unmap_page(x); frame_free(f, 1); } } region_free(ptr); } void region_free_unmap(void* ptr) { region_info_t *i = find_region(ptr); ASSERT(i != 0); for (void* x = i->addr; x < i->addr + i->size; x += PAGE_SIZE) { pd_unmap_page(x); } region_free(ptr); } // =========================== // // DEBUG LOG PRINTING FUNCTION // // =========================== // void dbg_print_region_info() { mutex_lock(&ra_mutex); dbg_printf("/ Free kernel regions, by address:\n"); for (descriptor_t *d = first_free_region_by_addr; d != 0; d = d->free.next_by_addr) { dbg_printf("| 0x%p - 0x%p\n", d->free.addr, d->free.addr + d->free.size); ASSERT(d != d->free.next_by_addr); } dbg_printf("- Free kernel regions, by size:\n"); for (descriptor_t *d = first_free_region_by_size; d != 0; d = d->free.next_by_size) { dbg_printf("| 0x%p - 0x%p\n", d->free.addr, d->free.addr + d->free.size); ASSERT(d != d->free.next_by_size); } dbg_printf("- Used kernel regions:\n"); for (descriptor_t *d = first_used_region; d != 0; d = d->used.next_by_addr) { dbg_printf("| 0x%p - 0x%p", d->used.i.addr, d->used.i.addr + d->used.i.size); if (d->used.i.type & REGION_T_KERNEL_BASE) dbg_printf(" Kernel code & base data"); if (d->used.i.type & REGION_T_DESCRIPTORS) dbg_printf(" Region descriptors"); if (d->used.i.type & REGION_T_CORE_HEAP) dbg_printf(" Core heap"); if (d->used.i.type & REGION_T_KPROC_HEAP) dbg_printf(" Kernel process heap"); if (d->used.i.type & REGION_T_KPROC_STACK) dbg_printf(" Kernel process stack"); if (d->used.i.type & REGION_T_PROC_KSTACK) dbg_printf(" Process kernel stack"); if (d->used.i.type & REGION_T_CACHE) dbg_printf(" Cache"); if (d->used.i.type & REGION_T_HW) dbg_printf(" Hardware"); dbg_printf("\n"); ASSERT(d != d->used.next_by_addr); } dbg_printf("\\\n"); mutex_unlock(&ra_mutex); } /* vim: set ts=4 sw=4 tw=0 noet :*/