#include #include #include #include #include #include #include #include #include void save_context_and_enter_scheduler(saved_context_t *ctx); void resume_context(saved_context_t *ctx); thread_t *current_thread = 0; // ====================== // // THE PROGRAMMABLE TIMER // // ====================== // void set_pit_frequency(uint32_t freq) { uint32_t divisor = 1193180 / freq; ASSERT(divisor < 65536); // must fit on 16 bits uint8_t l = (divisor & 0xFF); uint8_t h = ((divisor >> 8) & 0xFF); outb(0x43, 0x36); outb(0x40, l); outb(0x40, h); } // =========================== // // CRITICAL SECTION MANAGEMENT // // =========================== // int enter_critical(int level) { asm volatile("cli"); if (current_thread == 0) return CL_EXCL; int prev_level = current_thread->critical_level; if (level > prev_level) current_thread->critical_level = level; if (current_thread->critical_level < CL_NOINT) asm volatile("sti"); return prev_level; } void exit_critical(int prev_level) { asm volatile("cli"); if (current_thread == 0) return; if (prev_level < current_thread->critical_level) current_thread->critical_level = prev_level; if (current_thread->critical_level < CL_NOINT) asm volatile("sti"); } // ================== // // THE TASK SCHEDULER // // ================== // static thread_t *queue_first_thread = 0, *queue_last_thread = 0; void enqueue_thread(thread_t *t, bool just_ran) { ASSERT(t->state == T_STATE_RUNNING); if (queue_first_thread == 0) { queue_first_thread = queue_last_thread = t; t->next_in_queue = 0; } else if (just_ran) { t->next_in_queue = 0; queue_last_thread->next_in_queue = t; queue_last_thread = t; } else { t->next_in_queue = queue_first_thread; queue_first_thread = t; } } thread_t* dequeue_thread() { thread_t *t = queue_first_thread; if (t == 0) return 0; queue_first_thread = t->next_in_queue; if (queue_first_thread == 0) queue_last_thread = 0; return t; } // ================ // // THE TASKING CODE // // ================ // void run_scheduler() { // At this point, interrupts are disabled // This function is expected NEVER TO RETURN if (current_thread != 0 && current_thread->state == T_STATE_RUNNING) { current_thread->last_ran = worker_get_time(); if (current_thread->proc) current_thread->proc->last_ran = current_thread->last_ran; enqueue_thread(current_thread, true); } current_thread = dequeue_thread(); if (current_thread != 0) { set_kernel_stack(current_thread->stack_region->addr + current_thread->stack_region->size); resume_context(¤t_thread->ctx); } else { // Wait for an IRQ asm volatile("sti; hlt"); // At this point an IRQ has happenned // and has been processed. Loop around. run_scheduler(); } } static void run_thread(void (*entry)(void*), void* data) { ASSERT(current_thread->state == T_STATE_RUNNING); switch_pagedir(get_kernel_pagedir()); asm volatile("sti"); entry(data); exit(); } thread_t *new_thread(entry_t entry, void* data) { thread_t *t = (thread_t*)malloc(sizeof(thread_t)); if (t == 0) return 0; void* stack = region_alloc(KPROC_STACK_SIZE, "Stack", 0); if (stack == 0) { free(t); return 0; } for (void* i = stack + PAGE_SIZE; i < stack + KPROC_STACK_SIZE; i += PAGE_SIZE) { uint32_t f = frame_alloc(1); if (f == 0) { PANIC("TODO (OOM could not create kernel stack for new thread)"); } bool map_ok = pd_map_page(i, f, true); if (!map_ok) { PANIC("TODO (OOM(2) could not create kernel stack for new thread)"); } } t->stack_region = find_region(stack); t->ctx.esp = (uint32_t*)(t->stack_region->addr + t->stack_region->size); *(--t->ctx.esp) = (uint32_t)data; // push second argument : data *(--t->ctx.esp) = (uint32_t)entry; // push first argument : entry point *(--t->ctx.esp) = 0; // push invalid return address (the run_thread function never returns) t->ctx.eip = (void(*)())run_thread; t->state = T_STATE_PAUSED; t->last_ran = 0; t->current_pd_d = get_kernel_pagedir(); // used by user processes t->proc = 0; t->user_ex_handler = 0; t->critical_level = CL_USER; return t; } // ========== // // SETUP CODE // // ========== // static void irq0_handler(registers_t *regs) { worker_notify_time(1000000 / TASK_SWITCH_FREQUENCY); if (current_thread != 0 && current_thread->critical_level == CL_USER) { save_context_and_enter_scheduler(¤t_thread->ctx); } } void threading_setup(entry_t cont, void* arg) { set_pit_frequency(TASK_SWITCH_FREQUENCY); idt_set_irq_handler(IRQ0, irq0_handler); thread_t *t = new_thread(cont, arg); ASSERT(t != 0); resume_thread(t); exit_critical(CL_USER); run_scheduler(); // never returns ASSERT(false); } // ======================= // // TASK STATE MANIPULATION // // ======================= // void yield() { ASSERT(current_thread != 0 && current_thread->critical_level != CL_EXCL); save_context_and_enter_scheduler(¤t_thread->ctx); } void pause() { ASSERT(current_thread != 0 && current_thread->critical_level != CL_EXCL); current_thread->state = T_STATE_PAUSED; save_context_and_enter_scheduler(¤t_thread->ctx); } void usleep(int usecs) { void sleeper_resume(void* t) { thread_t *thread = (thread_t*)t; resume_thread(thread); } if (current_thread == 0) return; bool ok = worker_push_in(usecs, sleeper_resume, current_thread); if (ok) pause(); } void exit() { current_thread->state = T_STATE_FINISHED; // TODO : add job for deleting the thread, or whatever yield(); // expected never to return! ASSERT(false); } bool resume_thread(thread_t *thread) { bool ret = false; int st = enter_critical(CL_NOINT); if (thread->state == T_STATE_PAUSED) { ret = true; thread->state = T_STATE_RUNNING; enqueue_thread(thread, false); } exit_critical(st); return ret; } /* vim: set ts=4 sw=4 tw=0 noet :*/