#include #include #include #include #include #include #include #include #include #include #include #include void save_context_and_enter_scheduler(saved_context_t *ctx); void resume_context(saved_context_t *ctx); thread_t *current_thread = 0; static hashtbl_t *waiters = 0; // threads waiting on a ressource // ====================== // // THE PROGRAMMABLE TIMER // // ====================== // void set_pit_frequency(uint32_t freq) { uint32_t divisor = 1193180 / freq; ASSERT(divisor < 65536); // must fit on 16 bits uint8_t l = (divisor & 0xFF); uint8_t h = ((divisor >> 8) & 0xFF); outb(0x43, 0x36); outb(0x40, l); outb(0x40, h); } // =========================== // // CRITICAL SECTION MANAGEMENT // // =========================== // int enter_critical(int level) { asm volatile("cli"); /*dbg_printf(" >%d< ", level);*/ if (current_thread == 0) return CL_EXCL; int prev_level = current_thread->critical_level; if (level > prev_level) current_thread->critical_level = level; if (current_thread->critical_level < CL_NOINT) asm volatile("sti"); return prev_level; } void exit_critical(int prev_level) { asm volatile("cli"); /*dbg_printf(" <%d> ", prev_level);*/ if (current_thread == 0) return; if (prev_level < current_thread->critical_level) current_thread->critical_level = prev_level; if (current_thread->critical_level < CL_NOINT) asm volatile("sti"); } // ================== // // THE TASK SCHEDULER // // ================== // static thread_t *queue_first_thread = 0, *queue_last_thread = 0; void enqueue_thread(thread_t *t, bool just_ran) { ASSERT(t->state == T_STATE_RUNNING); if (queue_first_thread == 0) { queue_first_thread = queue_last_thread = t; t->next_in_queue = 0; } else if (just_ran) { t->next_in_queue = 0; queue_last_thread->next_in_queue = t; queue_last_thread = t; } else { t->next_in_queue = queue_first_thread; queue_first_thread = t; } } thread_t* dequeue_thread() { thread_t *t = queue_first_thread; if (t == 0) return 0; queue_first_thread = t->next_in_queue; if (queue_first_thread == 0) queue_last_thread = 0; return t; } void remove_thread_from_queue(thread_t *t) { if (queue_first_thread == t) { queue_first_thread = t->next_in_queue; if (queue_first_thread == 0) queue_last_thread = 0; } else { for (thread_t *it = queue_first_thread; it != 0; it = it->next_in_queue) { if (it->next_in_queue == t) { it->next_in_queue = t->next_in_queue; if (it->next_in_queue == 0) queue_last_thread = t; break; } } } } // ================ // // THE TASKING CODE // // ================ // void run_scheduler() { // At this point, interrupts are disabled // This function is expected NEVER TO RETURN thread_t *prev_thread = current_thread; if (current_thread != 0 && current_thread->state == T_STATE_RUNNING) { current_thread->last_ran = get_kernel_time(); if (current_thread->proc) current_thread->proc->last_ran = current_thread->last_ran; enqueue_thread(current_thread, true); } current_thread = dequeue_thread(); if (current_thread != prev_thread) dbg_printf("[0x%p]\n", current_thread); if (current_thread != 0) { thread_t *ptr = current_thread; prng_add_entropy((uint8_t*)&ptr, sizeof(ptr)); set_kernel_stack(current_thread->stack_region->addr + current_thread->stack_region->size); resume_context(¤t_thread->ctx); } else { // Wait for an IRQ asm volatile("sti; hlt"); // At this point an IRQ has happenned // and has been processed. Loop around. run_scheduler(); } } static void run_thread(void (*entry)(void*), void* data) { ASSERT(current_thread->state == T_STATE_RUNNING); dbg_printf("Begin thread 0x%p (in process %d)\n", current_thread, (current_thread->proc ? current_thread->proc->pid : 0)); switch_pagedir(get_kernel_pagedir()); exit_critical(CL_USER); entry(data); exit(); } thread_t *new_thread(entry_t entry, void* data) { thread_t *t = (thread_t*)malloc(sizeof(thread_t)); if (t == 0) return 0; void* stack = region_alloc(KPROC_STACK_SIZE + PAGE_SIZE, "Stack"); if (stack == 0) { free(t); return 0; } void* stack_low = stack + PAGE_SIZE; void* stack_high = stack_low + KPROC_STACK_SIZE; for (void* i = stack_low; i < stack_high; i += PAGE_SIZE) { uint32_t f; int tries = 0; while ((f = frame_alloc(1)) == 0 && (tries++) < 3) { free_some_memory(); } if (f == 0) { PANIC("TODO (OOM could not create kernel stack for new thread)"); } bool map_ok = pd_map_page(i, f, true); if (!map_ok) { PANIC("TODO (OOM(2) could not create kernel stack for new thread)"); } } t->stack_region = find_region(stack); ASSERT(stack_high == t->stack_region->addr + t->stack_region->size); t->ctx.esp = (uint32_t*)stack_high; *(--t->ctx.esp) = (uint32_t)data; // push second argument : data *(--t->ctx.esp) = (uint32_t)entry; // push first argument : entry point *(--t->ctx.esp) = 0; // push invalid return address (the run_thread function never returns) t->ctx.eip = (void(*)())run_thread; t->state = T_STATE_LOADING; t->last_ran = 0; t->must_exit = false; t->current_pd_d = get_kernel_pagedir(); t->critical_level = CL_EXCL; // used by user processes t->proc = 0; t->next_in_proc = 0; t->user_ex_handler = 0; return t; } void delete_thread(thread_t *t) { ASSERT(t->state == T_STATE_FINISHED); dbg_printf("Deleting thread 0x%p\n", t); region_free_unmap_free(t->stack_region->addr); free(t); } // ========== // // SETUP CODE // // ========== // void irq0_handler(registers_t *regs) { notify_time_pass(1000000 / TASK_SWITCH_FREQUENCY); } void threading_irq0_handler() { if (current_thread != 0 && current_thread->critical_level == CL_USER) { save_context_and_enter_scheduler(¤t_thread->ctx); } } void threading_setup(entry_t cont, void* arg) { waiters = create_hashtbl(id_key_eq_fun, id_hash_fun, 0); ASSERT(waiters != 0); set_pit_frequency(TASK_SWITCH_FREQUENCY); idt_set_irq_handler(IRQ0, &irq0_handler); thread_t *t = new_thread(cont, arg); ASSERT(t != 0); start_thread(t); exit_critical(CL_USER); run_scheduler(); // never returns ASSERT(false); } // ======================= // // TASK STATE MANIPULATION // // ======================= // void start_thread(thread_t *t) { ASSERT(t->state == T_STATE_LOADING); t->state = T_STATE_RUNNING; { int st = enter_critical(CL_NOINT); enqueue_thread(t, false); exit_critical(st); } } void yield() { ASSERT(current_thread != 0); ASSERT(current_thread->critical_level != CL_EXCL); save_context_and_enter_scheduler(¤t_thread->ctx); } bool wait_on(void* x) { return wait_on_many(&x, 1); } bool wait_on_many(void** x, size_t n) { ASSERT(current_thread != 0); ASSERT(current_thread->critical_level != CL_EXCL); ASSERT(n > 0); int st = enter_critical(CL_NOINT); // ---- Check we can wait on all the requested objects bool ok = true; for (size_t i = 0; ok && i < n; i++) { void* prev_th = hashtbl_find(waiters, x[i]); if (prev_th == 0) { bool add_ok = hashtbl_add(waiters, x[i], (void*)1); if (!add_ok) { ok = false; } } else if (prev_th != (void*)1) { ok = false; break; } } if (!ok) { exit_critical(st); return false; } // ---- Set ourselves as the waiting thread for all the requested objets dbg_printf("Wait on many: "); for (size_t i = 0; i < n; i++) { ASSERT(hashtbl_change(waiters, x[i], current_thread)); dbg_printf("0x%p (0x%p) ", x[i], hashtbl_find(waiters, x[i])); } dbg_printf("\n"); // ---- Go to sleep current_thread->state = T_STATE_PAUSED; save_context_and_enter_scheduler(¤t_thread->ctx); // ---- Remove ourselves from the list for (size_t i = 0; i < n; i++) { ASSERT(hashtbl_change(waiters, x[i], (void*)1)); } exit_critical(st); // ---- Check that we weren't waked up because of a kill request if (current_thread->must_exit) return false; return true; } void usleep(int usecs) { if (current_thread == 0) return; void resume_on_v(void* x) { resume_on(x); } bool ok = worker_push_in(usecs, resume_on_v, current_thread); if (ok) wait_on(current_thread); } void exit() { void exit_cleanup_task(void* v) { thread_t *t = (thread_t*)v; if (t->proc == 0) { // stand alone thread, can be deleted safely delete_thread(t); } else { // call specific routine from process code process_thread_exited(t); } } int st = enter_critical(CL_NOSWITCH); // the critical section here does not guarantee that worker_push will return immediately // (it may switch before adding the delete_thread task), but once the task is added // no other switch may happen, therefore this thread will not get re-enqueued dbg_printf("Thread 0x%p exiting.\n", current_thread); worker_push(exit_cleanup_task, current_thread); current_thread->state = T_STATE_FINISHED; exit_critical(st); yield(); // expected never to return! ASSERT(false); } bool resume_on(void* x) { thread_t *thread; bool ret = false; int st = enter_critical(CL_NOINT); thread = hashtbl_find(waiters, x); dbg_printf("Resume on 0x%p : 0x%p\n", x, thread); if (thread != 0 && thread != (void*)1) { if (thread->state == T_STATE_PAUSED) { thread->state = T_STATE_RUNNING; enqueue_thread(thread, false); ret = true; } } exit_critical(st); return ret; } void kill_thread(thread_t *thread) { ASSERT(thread != current_thread); int st = enter_critical(CL_NOSWITCH); thread->must_exit = true; int i = 0; while (thread->state != T_STATE_FINISHED) { if (thread->state == T_STATE_PAUSED) { thread->state = T_STATE_RUNNING; enqueue_thread(thread, false); } yield(); if (i++ > 100) dbg_printf("Thread 0x%p must be killed but will not exit.\n", thread); } exit_critical(st); } /* vim: set ts=4 sw=4 tw=0 noet :*/