#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern const void k_end_addr; // defined in linker script : 0xC0000000 plus kernel stuff void breakpoint_handler(registers_t *regs) { dbg_printf("Breakpoint! (int3)\n"); dbg_dump_registers(regs); BOCHS_BREAKPOINT; } void test_breakpoint() { dbg_printf("(BEGIN-TEST 'breakpoint-test)\n"); asm volatile("int $0x3"); // test breakpoint dbg_printf("(TEST-OK)\n"); } void test_region_1() { dbg_printf("(BEGIN-TEST 'region-test-1)\n"); void* p = region_alloc(0x1000, "Test region", 0); dbg_printf("Allocated one-page region: 0x%p\n", p); dbg_print_region_info(); void* q = region_alloc(0x1000, "Test region", 0); dbg_printf("Allocated one-page region: 0x%p\n", q); dbg_print_region_info(); void* r = region_alloc(0x2000, "Test region", 0); dbg_printf("Allocated two-page region: 0x%p\n", r); dbg_print_region_info(); void* s = region_alloc(0x10000, "Test region", 0); dbg_printf("Allocated 16-page region: 0x%p\n", s); dbg_print_region_info(); region_free(p); dbg_printf("Freed region 0x%p\n", p); dbg_print_region_info(); region_free(q); dbg_printf("Freed region 0x%p\n", q); dbg_print_region_info(); region_free(r); dbg_printf("Freed region 0x%p\n", r); dbg_print_region_info(); region_free(s); dbg_printf("Freed region 0x%p\n", s); dbg_print_region_info(); dbg_printf("(TEST-OK)\n"); } void test_region_2() { // allocate a big region and try to write into it dbg_printf("(BEGIN-TEST 'region-test-2)\n"); const size_t n = 200; void* p0 = region_alloc(n * PAGE_SIZE, "Test big region", default_allocator_pf_handler); for (size_t i = 0; i < n; i++) { uint32_t *x = (uint32_t*)(p0 + i * PAGE_SIZE); x[0] = 12; x[1] = (i * 20422) % 122; } // unmap memory for (size_t i = 0; i < n; i++) { void* p = p0 + i * PAGE_SIZE; uint32_t *x = (uint32_t*)p; ASSERT(x[1] == (i * 20422) % 122); uint32_t f = pd_get_frame(p); ASSERT(f != 0); pd_unmap_page(p); ASSERT(pd_get_frame(p) == 0); frame_free(f, 1); } region_free(p0); dbg_printf("(TEST-OK)\n"); } void kmalloc_test(void* kernel_data_end) { dbg_printf("(BEGIN-TEST 'kmalloc-test)\n"); // Test kmalloc ! dbg_print_region_info(); const int m = 200; uint16_t** ptr = malloc(m * sizeof(uint32_t)); for (int i = 0; i < m; i++) { size_t s = 1 << ((i * 7) % 11 + 2); ptr[i] = (uint16_t*)malloc(s); ASSERT((void*)ptr[i] >= kernel_data_end && (size_t)ptr[i] < 0xFFC00000); *ptr[i] = ((i * 211) % 1024); } dbg_printf("Fully allocated.\n"); dbg_print_region_info(); for (int i = 0; i < m; i++) { for (int j = i; j < m; j++) { ASSERT(*ptr[j] == (j * 211) % 1024); } free(ptr[i]); } free(ptr); dbg_printf("Kmalloc test OK.\n"); dbg_print_region_info(); dbg_printf("(TEST-OK)\n"); } void test_hashtbl_1() { dbg_printf("(BEGIN-TEST 'test-hashtbl-1)\n"); // hashtable test hashtbl_t *ht = create_hashtbl(str_key_eq_fun, str_hash_fun, 0, 0); ASSERT(ht != 0); ASSERT(hashtbl_add(ht, "test1", "STRTEST1")); ASSERT(hashtbl_add(ht, "test2", "STRTEST2")); ASSERT(hashtbl_find(ht, "test1") != 0 && strcmp(hashtbl_find(ht, "test1"), "STRTEST1") == 0); ASSERT(hashtbl_find(ht, "test2") != 0 && strcmp(hashtbl_find(ht, "test2"), "STRTEST2") == 0); ASSERT(hashtbl_find(ht, "test") == 0); ASSERT(hashtbl_add(ht, "test", "Forever alone")); ASSERT(hashtbl_find(ht, "test1") != 0 && strcmp(hashtbl_find(ht, "test1"), "STRTEST1") == 0); ASSERT(hashtbl_find(ht, "test2") != 0 && strcmp(hashtbl_find(ht, "test2"), "STRTEST2") == 0); ASSERT(hashtbl_find(ht, "test") != 0 && strcmp(hashtbl_find(ht, "test"), "Forever alone") == 0); hashtbl_remove(ht, "test1"); ASSERT(hashtbl_find(ht, "test1") == 0); ASSERT(hashtbl_find(ht, "test2") != 0 && strcmp(hashtbl_find(ht, "test2"), "STRTEST2") == 0); ASSERT(hashtbl_find(ht, "test") != 0 && strcmp(hashtbl_find(ht, "test"), "Forever alone") == 0); delete_hashtbl(ht, 0); dbg_printf("(TEST-OK)\n"); } void test_hashtbl_2() { dbg_printf("(BEGIN-TEST 'test-hashtbl-2)\n"); hashtbl_t *ht = create_hashtbl(id_key_eq_fun, id_hash_fun, 0, 0); ASSERT(ht != 0); ASSERT(hashtbl_add(ht, (void*)12, "TESTSTR12")); ASSERT(hashtbl_add(ht, (void*)777, "TESTSTR777")); ASSERT(hashtbl_find(ht, (void*)12) != 0 && strcmp(hashtbl_find(ht, (void*)12), "TESTSTR12") == 0); ASSERT(hashtbl_find(ht, (void*)777) != 0 && strcmp(hashtbl_find(ht, (void*)777), "TESTSTR777") == 0); ASSERT(hashtbl_find(ht, (void*)144) == 0); ASSERT(hashtbl_add(ht, (void*)144, "Forever alone")); ASSERT(hashtbl_find(ht, (void*)12) != 0 && strcmp(hashtbl_find(ht, (void*)12), "TESTSTR12") == 0); ASSERT(hashtbl_find(ht, (void*)144) != 0 && strcmp(hashtbl_find(ht, (void*)144), "Forever alone") == 0); ASSERT(hashtbl_find(ht, (void*)777) != 0 && strcmp(hashtbl_find(ht, (void*)777), "TESTSTR777") == 0); hashtbl_remove(ht, (void*)12); ASSERT(hashtbl_find(ht, (void*)12) == 0); ASSERT(hashtbl_find(ht, (void*)144) != 0 && strcmp(hashtbl_find(ht, (void*)144), "Forever alone") == 0); ASSERT(hashtbl_find(ht, (void*)777) != 0 && strcmp(hashtbl_find(ht, (void*)777), "TESTSTR777") == 0); delete_hashtbl(ht, 0); dbg_printf("(TEST-OK)\n"); } void test_cmdline(multiboot_info_t *mbd, fs_t *devfs) { dbg_printf("(BEGIN-TEST 'test-cmdline)\n"); fs_handle_t *f = fs_open(devfs, "/cmdline", FM_READ); ASSERT(f != 0); char buf[256]; size_t l = file_read(f, 0, 255, buf); ASSERT(l > 0); buf[l] = 0; unref_file(f); dbg_printf("Command line as in /cmdline file: '%s'.\n", buf); ASSERT(strcmp(buf, (char*)mbd->cmdline) == 0); dbg_printf("(TEST-OK)\n"); } void kernel_init_stage2(void* data); void kmain(multiboot_info_t *mbd, int32_t mb_magic) { // used for allocation of data structures before malloc is set up // a pointer to this pointer is passed to the functions that might have // to allocate memory ; they just increment it of the allocated quantity void* kernel_data_end = (void*)&k_end_addr; dbglog_setup(); dbg_printf("Hello, kernel world!\n"); dbg_printf("This is %s, version %s.\n", OS_NAME, OS_VERSION); ASSERT(mb_magic == MULTIBOOT_BOOTLOADER_MAGIC); // Rewrite multiboot header so that we are in higher half // Also check that kernel_data_end is after all modules, otherwise // we might overwrite something. mbd->cmdline += K_HIGHHALF_ADDR; size_t cmdline_end = mbd->cmdline + strlen((char*)mbd->cmdline); void* cmdline_end_pa = (void*)((cmdline_end & 0xFFFFF000) + 0x1000); if (cmdline_end_pa > kernel_data_end) kernel_data_end = cmdline_end_pa; mbd->mods_addr += K_HIGHHALF_ADDR; multiboot_module_t *mods = (multiboot_module_t*)mbd->mods_addr; for (unsigned i = 0; i < mbd->mods_count; i++) { mods[i].mod_start += K_HIGHHALF_ADDR; mods[i].mod_end += K_HIGHHALF_ADDR; mods[i].string += K_HIGHHALF_ADDR; void* mod_end_pa = (void*)((mods[i].mod_end & 0xFFFFF000) + 0x1000); if (mod_end_pa > kernel_data_end) kernel_data_end = mod_end_pa; } gdt_init(); dbg_printf("GDT set up.\n"); idt_init(); dbg_printf("IDT set up.\n"); idt_set_ex_handler(EX_BREAKPOINT, breakpoint_handler); test_breakpoint(); size_t total_ram = ((mbd->mem_upper + mbd->mem_lower) * 1024); dbg_printf("Total ram: %d Kb\n", total_ram / 1024); frame_init_allocator(total_ram, &kernel_data_end); dbg_printf("kernel_data_end: 0x%p\n", kernel_data_end); dbg_print_frame_stats(); paging_setup(kernel_data_end); dbg_printf("Paging seems to be working!\n"); BOCHS_BREAKPOINT; region_allocator_init(kernel_data_end); test_region_1(); test_region_2(); kmalloc_setup(); kmalloc_test(kernel_data_end); setup_syscalls(); // enter multi-threading mode // interrupts are enabled at this moment, so all // code run from now on should be preemtible (ie thread-safe) threading_setup(kernel_init_stage2, mbd); PANIC("Should never come here."); } void kernel_init_stage2(void* data) { multiboot_info_t *mbd = (multiboot_info_t*)data; dbg_print_region_info(); dbg_print_frame_stats(); test_hashtbl_1(); test_hashtbl_2(); // Create devfs register_nullfs_driver(); fs_t *devfs = make_fs("nullfs", 0, "cd"); ASSERT(devfs != 0); // Add kernel command line to devfs { dbg_printf("Kernel command line: '%s'\n", (char*)mbd->cmdline); size_t len = strlen((char*)mbd->cmdline); fs_handle_t* cmdline = fs_open(devfs, "/cmdline", FM_WRITE | FM_CREATE); ASSERT(cmdline != 0); ASSERT(file_write(cmdline, 0, len, (char*)mbd->cmdline) == len); unref_file(cmdline); } // Populate devfs with files for kernel modules ASSERT(fs_create(devfs, "/mod", FT_DIR)); multiboot_module_t *mods = (multiboot_module_t*)mbd->mods_addr; for (unsigned i = 0; i < mbd->mods_count; i++) { char* modname = (char*)mods[i].string; char* e = strchr(modname, ' '); if (e != 0) (*e) = 0; // ignore arguments char *b = strrchr(modname, '/'); if (b != 0) modname = b+1; // ignore path char name[6 + strlen(b)]; strcpy(name, "/mod/"); strcpy(name+5, modname); size_t len = mods[i].mod_end - mods[i].mod_start; dbg_printf("Adding module to VFS: '%s' (size %d)\n", name, len); /* // This would be the "good" way of doing it : fs_handle_t* mod_f = fs_open(devfs, name, FM_WRITE | FM_CREATE); ASSERT(mod_f != 0); ASSERT(file_write(mod_f, 0, len, (char*)mods[i].mod_start) == len); unref_file(mod_f); */ // But since we have a nullfs, we can do it that way to prevent useless data copies : ASSERT(nullfs_add_ram_file(devfs, name, (char*)mods[i].mod_start, len, false, FM_READ | FM_MMAP)); } test_cmdline(mbd, devfs); fs_handle_t *init_bin = fs_open(devfs, "/mod/init.bin", FM_READ | FM_MMAP); if (init_bin == 0) PANIC("No init.bin module provided!"); if (!is_elf(init_bin)) PANIC("init.bin is not valid ELF32 binary"); process_t *init_p = new_process(0); ASSERT(init_p != 0); bool add_devfs_ok = proc_add_fs(init_p, devfs, "dev"); ASSERT(add_devfs_ok); proc_entry_t *e = elf_load(init_bin, init_p); if (e == 0) PANIC("Could not load ELF file init.bin"); unref_file(init_bin); start_process(init_p, e); //TODO : // - (OK) populate devfs with information regarding kernel command line & modules // - create user process with init module provided on command line // - give it rights to devfs // - launch it // - just return, this thread is done dbg_printf("Reached kmain end! I'll just stop here and do nothing.\n"); } /* vim: set ts=4 sw=4 tw=0 noet :*/