#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // ===== FOR TESTS ===== #define TEST_PLACEHOLDER_AFTER_IDT #define TEST_PLACEHOLDER_AFTER_REGION #define TEST_PLACEHOLDER_AFTER_KMALLOC #define TEST_PLACEHOLDER_AFTER_TASKING #define TEST_PLACEHOLDER_AFTER_DEVFS #ifdef BUILD_KERNEL_TEST #define BEGIN_TEST(n) dbg_printf("(BEGIN-TEST %s)\n", n); #define TEST_OK { dbg_printf("(TEST-OK)\n"); asm volatile("cli; hlt"); } #include #endif // ===== / FOR TESTS ==== extern const void k_end_addr; // defined in linker script : 0xC0000000 plus kernel stuff void breakpoint_handler(registers_t *regs) { dbg_printf("Breakpoint! (int3)\n"); dbg_dump_registers(regs); BOCHS_BREAKPOINT; } void kernel_init_stage2(void* data); void kmain(multiboot_info_t *mbd, int32_t mb_magic) { // used for allocation of data structures before malloc is set up // a pointer to this pointer is passed to the functions that might have // to allocate memory ; they just increment it of the allocated quantity void* kernel_data_end = (void*)&k_end_addr; dbglog_setup(); dbg_printf("Hello, kernel world!\n"); dbg_printf("This is %s, version %s.\n", OS_NAME, OS_VERSION); ASSERT(mb_magic == MULTIBOOT_BOOTLOADER_MAGIC); // Rewrite multiboot header so that we are in higher half // Also check that kernel_data_end is after all modules, otherwise // we might overwrite something. mbd->cmdline += K_HIGHHALF_ADDR; size_t cmdline_end = mbd->cmdline + strlen((char*)mbd->cmdline); void* cmdline_end_pa = (void*)((cmdline_end & 0xFFFFF000) + 0x1000); if (cmdline_end_pa > kernel_data_end) kernel_data_end = cmdline_end_pa; mbd->mods_addr += K_HIGHHALF_ADDR; multiboot_module_t *mods = (multiboot_module_t*)mbd->mods_addr; for (unsigned i = 0; i < mbd->mods_count; i++) { mods[i].mod_start += K_HIGHHALF_ADDR; mods[i].mod_end += K_HIGHHALF_ADDR; mods[i].string += K_HIGHHALF_ADDR; void* mod_end_pa = (void*)((mods[i].mod_end & 0xFFFFF000) + 0x1000); if (mod_end_pa > kernel_data_end) kernel_data_end = mod_end_pa; } gdt_init(); dbg_printf("GDT set up.\n"); idt_init(); dbg_printf("IDT set up.\n"); idt_set_ex_handler(EX_BREAKPOINT, breakpoint_handler); TEST_PLACEHOLDER_AFTER_IDT; size_t total_ram = ((mbd->mem_upper + mbd->mem_lower) * 1024); dbg_printf("Total ram: %d Kb\n", total_ram / 1024); frame_init_allocator(total_ram, &kernel_data_end); dbg_printf("kernel_data_end: 0x%p\n", kernel_data_end); dbg_print_frame_stats(); paging_setup(kernel_data_end); dbg_printf("Paging seems to be working!\n"); region_allocator_init(kernel_data_end); TEST_PLACEHOLDER_AFTER_REGION; kmalloc_setup(); TEST_PLACEHOLDER_AFTER_KMALLOC; setup_syscalls(); // enter multi-threading mode // interrupts are enabled at this moment, so all // code run from now on should be preemtible (ie thread-safe) threading_setup(kernel_init_stage2, mbd); PANIC("Should never come here."); } void kernel_init_stage2(void* data) { multiboot_info_t *mbd = (multiboot_info_t*)data; dbg_print_region_info(); dbg_print_frame_stats(); TEST_PLACEHOLDER_AFTER_TASKING; // Create devfs register_nullfs_driver(); fs_t *devfs = make_fs("nullfs", 0, "cd"); ASSERT(devfs != 0); // Add kernel command line to devfs { dbg_printf("Kernel command line: '%s'\n", (char*)mbd->cmdline); size_t len = strlen((char*)mbd->cmdline); fs_handle_t* cmdline = fs_open(devfs, "/cmdline", FM_WRITE | FM_CREATE); ASSERT(cmdline != 0); ASSERT(file_write(cmdline, 0, len, (char*)mbd->cmdline) == len); unref_file(cmdline); } // Populate devfs with files for kernel modules ASSERT(fs_create(devfs, "/mod", FT_DIR)); multiboot_module_t *mods = (multiboot_module_t*)mbd->mods_addr; for (unsigned i = 0; i < mbd->mods_count; i++) { char* modname = (char*)mods[i].string; char* e = strchr(modname, ' '); if (e != 0) (*e) = 0; // ignore arguments char *b = strrchr(modname, '/'); if (b != 0) modname = b+1; // ignore path char name[6 + strlen(b)]; strcpy(name, "/mod/"); strcpy(name+5, modname); size_t len = mods[i].mod_end - mods[i].mod_start; dbg_printf("Adding module to VFS: '%s' (size %d)\n", name, len); /* // This would be the "good" way of doing it : fs_handle_t* mod_f = fs_open(devfs, name, FM_WRITE | FM_CREATE); ASSERT(mod_f != 0); ASSERT(file_write(mod_f, 0, len, (char*)mods[i].mod_start) == len); unref_file(mod_f); */ // But since we have a nullfs, we can do it that way to prevent useless data copies : ASSERT(nullfs_add_ram_file(devfs, name, (char*)mods[i].mod_start, len, false, FM_READ | FM_MMAP)); } TEST_PLACEHOLDER_AFTER_DEVFS; fs_handle_t *init_bin = fs_open(devfs, "/mod/init.bin", FM_READ | FM_MMAP); if (init_bin == 0) PANIC("No init.bin module provided!"); if (!is_elf(init_bin)) PANIC("init.bin is not valid ELF32 binary"); process_t *init_p = new_process(0); ASSERT(init_p != 0); bool add_devfs_ok = proc_add_fs(init_p, devfs, "dev"); ASSERT(add_devfs_ok); proc_entry_t *e = elf_load(init_bin, init_p); if (e == 0) PANIC("Could not load ELF file init.bin"); unref_file(init_bin); start_process(init_p, e); //TODO : // - (OK) populate devfs with information regarding kernel command line & modules // - create user process with init module provided on command line // - give it rights to devfs // - launch it // - just return, this thread is done dbg_printf("Reached kmain end! I'll just stop here and do nothing.\n"); } /* vim: set ts=4 sw=4 tw=0 noet :*/