#include #include #include #include #include #include #include #include #include void breakpoint_handler(registers_t *regs) { dbg_printf("Breakpoint! (int3)\n"); BOCHS_BREAKPOINT; } void test_pf_handler(pagedir_t *pd, region_info_t *i, size_t addr) { dbg_printf("0x%p", addr); uint32_t f = frame_alloc(1); if (f == 0) PANIC("Out Of Memory"); dbg_printf(" -> %i", f); int error = pd_map_page(addr, f, 1); if (error) PANIC("Could not map frame (OOM)"); } extern char k_end_addr; // defined in linker script : 0xC0000000 plus kernel stuff void kmain(struct multiboot_info_t *mbd, int32_t mb_magic) { dbglog_setup(); dbg_printf("Hello, kernel World!\n"); dbg_printf("This is %s, version %s.\n", OS_NAME, OS_VERSION); ASSERT(mb_magic == MULTIBOOT_BOOTLOADER_MAGIC); gdt_init(); dbg_printf("GDT set up.\n"); idt_init(); dbg_printf("IDT set up.\n"); idt_set_ex_handler(EX_BREAKPOINT, breakpoint_handler); // asm volatile("int $0x3"); // test breakpoint size_t total_ram = ((mbd->mem_upper + mbd->mem_lower) * 1024); dbg_printf("Total ram: %d Kb\n", total_ram / 1024); // paging_init(totalRam); // used for allocation of data structures before malloc is set up // a pointer to this pointer is passed to the functions that might have // to allocate memory ; they just increment it of the allocated quantity void* kernel_data_end = (void*)&k_end_addr; frame_init_allocator(total_ram, &kernel_data_end); dbg_printf("kernel_data_end: 0x%p\n", kernel_data_end); dbg_print_frame_stats(); paging_setup(kernel_data_end); dbg_printf("Paging seems to be working!\n"); region_allocator_init(kernel_data_end); dbg_print_region_stats(); size_t p = region_alloc(0x1000, REGION_T_HW, 0); dbg_printf("Allocated one-page region: 0x%p\n", p); dbg_print_region_stats(); size_t q = region_alloc(0x1000, REGION_T_HW, 0); dbg_printf("Allocated one-page region: 0x%p\n", q); dbg_print_region_stats(); size_t r = region_alloc(0x2000, REGION_T_HW, 0); dbg_printf("Allocated two-page region: 0x%p\n", r); dbg_print_region_stats(); size_t s = region_alloc(0x10000, REGION_T_CORE_HEAP, 0); dbg_printf("Allocated 16-page region: 0x%p\n", s); dbg_print_region_stats(); region_free(p); dbg_printf("Freed region 0x%p\n", p); dbg_print_region_stats(); region_free(q); dbg_printf("Freed region 0x%p\n", q); dbg_print_region_stats(); region_free(r); dbg_printf("Freed region 0x%p\n", r); dbg_print_region_stats(); region_free(s); dbg_printf("Freed region 0x%p\n", s); dbg_print_region_stats(); // allocate a big region and try to write into it const size_t n = 1000; size_t p0 = region_alloc(n * PAGE_SIZE, REGION_T_HW, test_pf_handler); for (size_t i = 0; i < n; i++) { uint32_t *x = (uint32_t*)(p0 + i * PAGE_SIZE); dbg_printf("[%i : ", i); x[0] = 12; dbg_printf(" : ."); x[1] = (i * 20422) % 122; dbg_printf("]\n", i); } // unmap memory for (size_t i = 0; i < n; i++) { uint32_t *x = (uint32_t*)(p0 + i * PAGE_SIZE); ASSERT(x[1] == (i * 20422) % 122); size_t f = pd_get_frame((size_t)x); ASSERT(f != 0); pd_unmap_page((size_t)x); frame_free(f, 1); } region_free(s); // TODO: // - setup allocator for physical pages (eg: buddy allocator, see OSDev wiki) // - setup allocator for virtual memory space // - setup paging PANIC("Reached kmain end! Falling off the edge."); } /* vim: set ts=4 sw=4 tw=0 noet :*/