#include <multiboot.h>
#include <config.h>
#include <dbglog.h>
#include <sys.h>
#include <gdt.h>
#include <idt.h>
#include <frame.h>
#include <paging.h>
#include <region.h>
#include <slab_alloc.h>
extern char k_end_addr; // defined in linker script : 0xC0000000 plus kernel stuff
void breakpoint_handler(registers_t *regs) {
dbg_printf("Breakpoint! (int3)\n");
BOCHS_BREAKPOINT;
}
void test_pf_handler(pagedir_t *pd, region_info_t *i, void* addr) {
dbg_printf(" {0x%p", addr);
uint32_t f = frame_alloc(1);
if (f == 0) PANIC("Out Of Memory");
dbg_printf(" -> %i} ", f);
int error = pd_map_page(addr, f, 1);
if (error) PANIC("Could not map frame (OOM)");
}
void* page_alloc_fun_for_kmalloc(size_t bytes) {
void* addr = region_alloc(bytes, REGION_T_CORE_HEAP, test_pf_handler);
dbg_printf("[alloc 0x%p for kmalloc : %p]\n", bytes, addr);
return addr;
}
void page_free_fun_for_kmalloc(void* ptr) {
dbg_printf("[Free 0x%p", ptr);
region_info_t *i = find_region(ptr);
ASSERT(i != 0 && i->type == REGION_T_CORE_HEAP);
for (void* x = i->addr; x < i->addr + i->size; x += PAGE_SIZE) {
uint32_t f = pd_get_frame(x);
dbg_printf(" %i", f);
if (f != 0) {
pd_unmap_page(x);
frame_free(f, 1);
}
}
dbg_printf(" : ");
region_free(ptr);
dbg_printf("ok]\n");
}
slab_type_t slab_sizes[] = {
{ "8B obj", 8, 2 },
{ "16B obj", 16, 2 },
{ "32B obj", 32, 2 },
{ "64B obj", 64, 4 },
{ "128B obj", 128, 4 },
{ "256B obj", 256, 4 },
{ "512B obj", 512, 8 },
{ "1KB obj", 1024, 8 },
{ "2KB obj", 2048, 16 },
{ "4KB obj", 4096, 16 },
{ 0, 0, 0 }
};
void kmain(struct multiboot_info_t *mbd, int32_t mb_magic) {
dbglog_setup();
dbg_printf("Hello, kernel World!\n");
dbg_printf("This is %s, version %s.\n", OS_NAME, OS_VERSION);
ASSERT(mb_magic == MULTIBOOT_BOOTLOADER_MAGIC);
gdt_init(); dbg_printf("GDT set up.\n");
idt_init(); dbg_printf("IDT set up.\n");
idt_set_ex_handler(EX_BREAKPOINT, breakpoint_handler);
// asm volatile("int $0x3"); // test breakpoint
size_t total_ram = ((mbd->mem_upper + mbd->mem_lower) * 1024);
dbg_printf("Total ram: %d Kb\n", total_ram / 1024);
// used for allocation of data structures before malloc is set up
// a pointer to this pointer is passed to the functions that might have
// to allocate memory ; they just increment it of the allocated quantity
void* kernel_data_end = &k_end_addr;
frame_init_allocator(total_ram, &kernel_data_end);
dbg_printf("kernel_data_end: 0x%p\n", kernel_data_end);
dbg_print_frame_stats();
paging_setup(kernel_data_end);
dbg_printf("Paging seems to be working!\n");
BOCHS_BREAKPOINT;
region_allocator_init(kernel_data_end);
dbg_print_region_stats();
void* p = region_alloc(0x1000, REGION_T_HW, 0);
dbg_printf("Allocated one-page region: 0x%p\n", p);
dbg_print_region_stats();
void* q = region_alloc(0x1000, REGION_T_HW, 0);
dbg_printf("Allocated one-page region: 0x%p\n", q);
dbg_print_region_stats();
void* r = region_alloc(0x2000, REGION_T_HW, 0);
dbg_printf("Allocated two-page region: 0x%p\n", r);
dbg_print_region_stats();
void* s = region_alloc(0x10000, REGION_T_CORE_HEAP, 0);
dbg_printf("Allocated 16-page region: 0x%p\n", s);
dbg_print_region_stats();
region_free(p);
dbg_printf("Freed region 0x%p\n", p);
dbg_print_region_stats();
region_free(q);
dbg_printf("Freed region 0x%p\n", q);
dbg_print_region_stats();
region_free(r);
dbg_printf("Freed region 0x%p\n", r);
dbg_print_region_stats();
region_free(s);
dbg_printf("Freed region 0x%p\n", s);
dbg_print_region_stats();
BOCHS_BREAKPOINT;
// allocate a big region and try to write into it
const size_t n = 200;
void* p0 = region_alloc(n * PAGE_SIZE, REGION_T_HW, test_pf_handler);
for (size_t i = 0; i < n; i++) {
uint32_t *x = (uint32_t*)(p0 + i * PAGE_SIZE);
dbg_printf("[%i : ", i);
x[0] = 12;
dbg_printf(" : .");
x[1] = (i * 20422) % 122;
dbg_printf("]\n", i);
}
BOCHS_BREAKPOINT;
// unmap memory
for (size_t i = 0; i < n; i++) {
void* p = p0 + i * PAGE_SIZE;
uint32_t *x = (uint32_t*)p;
ASSERT(x[1] == (i * 20422) % 122);
uint32_t f = pd_get_frame(p);
ASSERT(f != 0);
pd_unmap_page(p);
ASSERT(pd_get_frame(p) == 0);
frame_free(f, 1);
}
region_free(s);
BOCHS_BREAKPOINT;
// Test slab allocator !
mem_allocator_t *a =
create_slab_allocator(slab_sizes, page_alloc_fun_for_kmalloc,
page_free_fun_for_kmalloc);
dbg_printf("Created slab allocator at 0x%p\n", a);
dbg_print_region_stats();
const int m = 200;
uint16_t** ptr = slab_alloc(a, m * sizeof(uint32_t));
for (int i = 0; i < m; i++) {
size_t s = 1 << ((i * 7) % 11 + 2);
ptr[i] = (uint16_t*)slab_alloc(a, s);
ASSERT((void*)ptr[i] >= kernel_data_end && (size_t)ptr[i] < 0xFFC00000);
*ptr[i] = ((i * 211) % 1024);
dbg_printf("Alloc %i : 0x%p\n", s, ptr[i]);
}
dbg_print_region_stats();
for (int i = 0; i < m; i++) {
for (int j = i; j < m; j++) {
ASSERT(*ptr[j] == (j * 211) % 1024);
}
slab_free(a, ptr[i]);
}
dbg_print_region_stats();
dbg_printf("Destroying slab allocator...\n");
destroy_slab_allocator(a);
dbg_print_region_stats();
PANIC("Reached kmain end! Falling off the edge.");
}
/* vim: set ts=4 sw=4 tw=0 noet :*/