From b5dc9d799f8eca793a4fd1d9b5111155ae6af6d8 Mon Sep 17 00:00:00 2001 From: Alex AUVOLAT Date: Fri, 28 Mar 2014 09:33:20 +0100 Subject: Import and compile article5 --- sos-code-article5/sos/kmem_slab.c | 812 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 812 insertions(+) create mode 100644 sos-code-article5/sos/kmem_slab.c (limited to 'sos-code-article5/sos/kmem_slab.c') diff --git a/sos-code-article5/sos/kmem_slab.c b/sos-code-article5/sos/kmem_slab.c new file mode 100644 index 0000000..557508c --- /dev/null +++ b/sos-code-article5/sos/kmem_slab.c @@ -0,0 +1,812 @@ +/* Copyright (C) 2000 Thomas Petazzoni + Copyright (C) 2004 David Decotigny + + This program is free software; you can redistribute it and/or + modify it under the terms of the GNU General Public License + as published by the Free Software Foundation; either version 2 + of the License, or (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, + USA. +*/ +#include +#include +#include +#include +#include +#include +#include + +#include "kmem_slab.h" + +/* Dimensioning constants */ +#define NB_PAGES_IN_SLAB_OF_CACHES 1 +#define NB_PAGES_IN_SLAB_OF_RANGES 1 + +/** The structure of a slab cache */ +struct sos_kslab_cache +{ + char *name; + + /* non mutable characteristics of this slab */ + sos_size_t original_obj_size; /* asked object size */ + sos_size_t alloc_obj_size; /* actual object size, taking the + alignment constraints into account */ + sos_count_t nb_objects_per_slab; + sos_count_t nb_pages_per_slab; + sos_count_t min_free_objects; + +/* slab cache flags */ +// #define SOS_KSLAB_CREATE_MAP (1<<0) /* See kmem_slab.h */ +// #define SOS_KSLAB_CREATE_ZERO (1<<1) /* " " " " " " " " */ +#define ON_SLAB (1<<31) /* struct sos_kslab is included inside the slab */ + sos_ui32_t flags; + + /* Supervision data (updated at run-time) */ + sos_count_t nb_free_objects; + + /* The lists of slabs owned by this cache */ + struct sos_kslab *slab_list; /* head = non full, tail = full */ + + /* The caches are linked together on the kslab_cache_list */ + struct sos_kslab_cache *prev, *next; +}; + + +/** The structure of a slab */ +struct sos_kslab +{ + /** Number of free objects on this slab */ + sos_count_t nb_free; + + /** The list of these free objects */ + struct sos_kslab_free_object *free; + + /** The address of the associated range structure */ + struct sos_kmem_range *range; + + /** Virtual start address of this range */ + sos_vaddr_t first_object; + + /** Slab cache owning this slab */ + struct sos_kslab_cache *cache; + + /** Links to the other slabs managed by the same cache */ + struct sos_kslab *prev, *next; +}; + + +/** The structure of the free objects in the slab */ +struct sos_kslab_free_object +{ + struct sos_kslab_free_object *prev, *next; +}; + +/** The cache of slab caches */ +static struct sos_kslab_cache *cache_of_struct_kslab_cache; + +/** The cache of slab structures for non-ON_SLAB caches */ +static struct sos_kslab_cache *cache_of_struct_kslab; + +/** The list of slab caches */ +static struct sos_kslab_cache *kslab_cache_list; + +/* Helper function to initialize a cache structure */ +static sos_ret_t +cache_initialize(/*out*/struct sos_kslab_cache *the_cache, + const char* name, + sos_size_t obj_size, + sos_count_t pages_per_slab, + sos_count_t min_free_objs, + sos_ui32_t cache_flags) +{ + unsigned int space_left; + sos_size_t alloc_obj_size; + + if (obj_size <= 0) + return -SOS_EINVAL; + + /* Default allocation size is the requested one */ + alloc_obj_size = obj_size; + + /* Make sure the requested size is large enough to store a + free_object structure */ + if (alloc_obj_size < sizeof(struct sos_kslab_free_object)) + alloc_obj_size = sizeof(struct sos_kslab_free_object); + + /* Align obj_size on 4 bytes */ + alloc_obj_size = SOS_ALIGN_SUP(alloc_obj_size, sizeof(int)); + + /* Make sure supplied number of pages per slab is consistent with + actual allocated object size */ + if (alloc_obj_size > pages_per_slab*SOS_PAGE_SIZE) + return -SOS_EINVAL; + + /* Refuse too large slabs */ + if (pages_per_slab > MAX_PAGES_PER_SLAB) + return -SOS_ENOMEM; + + /* Fills in the cache structure */ + memset(the_cache, 0x0, sizeof(struct sos_kslab_cache)); + the_cache->name = (char*)name; + the_cache->flags = cache_flags; + the_cache->original_obj_size = obj_size; + the_cache->alloc_obj_size = alloc_obj_size; + the_cache->min_free_objects = min_free_objs; + the_cache->nb_pages_per_slab = pages_per_slab; + + /* Small size objets => the slab structure is allocated directly in + the slab */ + if(alloc_obj_size <= sizeof(struct sos_kslab)) + the_cache->flags |= ON_SLAB; + + /* + * Compute the space left once the maximum number of objects + * have been allocated in the slab + */ + space_left = the_cache->nb_pages_per_slab*SOS_PAGE_SIZE; + if(the_cache->flags & ON_SLAB) + space_left -= sizeof(struct sos_kslab); + the_cache->nb_objects_per_slab = space_left / alloc_obj_size; + space_left -= the_cache->nb_objects_per_slab*alloc_obj_size; + + /* Make sure a single slab is large enough to contain the minimum + number of objects requested */ + if (the_cache->nb_objects_per_slab < min_free_objs) + return -SOS_EINVAL; + + /* If there is now enough place for both the objects and the slab + structure, then make the slab structure ON_SLAB */ + if (space_left >= sizeof(struct sos_kslab)) + the_cache->flags |= ON_SLAB; + + return SOS_OK; +} + + +/** Helper function to add a new slab for the given cache. */ +static sos_ret_t +cache_add_slab(struct sos_kslab_cache *kslab_cache, + sos_vaddr_t vaddr_slab, + struct sos_kslab *slab) +{ + int i; + + /* Setup the slab structure */ + memset(slab, 0x0, sizeof(struct sos_kslab)); + slab->cache = kslab_cache; + + /* Establish the address of the first free object */ + slab->first_object = vaddr_slab; + + /* Account for this new slab in the cache */ + slab->nb_free = kslab_cache->nb_objects_per_slab; + kslab_cache->nb_free_objects += slab->nb_free; + + /* Build the list of free objects */ + for (i = 0 ; i < kslab_cache->nb_objects_per_slab ; i++) + { + sos_vaddr_t obj_vaddr; + + /* Set object's address */ + obj_vaddr = slab->first_object + i*kslab_cache->alloc_obj_size; + + /* Add it to the list of free objects */ + list_add_tail(slab->free, + (struct sos_kslab_free_object *)obj_vaddr); + } + + /* Add the slab to the cache's slab list: add the head of the list + since this slab is non full */ + list_add_head(kslab_cache->slab_list, slab); + + return SOS_OK; +} + + +/** Helper function to allocate a new slab for the given kslab_cache */ +static sos_ret_t +cache_grow(struct sos_kslab_cache *kslab_cache, + sos_ui32_t alloc_flags) +{ + sos_ui32_t range_alloc_flags; + + struct sos_kmem_range *new_range; + sos_vaddr_t new_range_start; + + struct sos_kslab *new_slab; + + /* + * Setup the flags for the range allocation + */ + range_alloc_flags = 0; + + /* Atomic ? */ + if (alloc_flags & SOS_KSLAB_ALLOC_ATOMIC) + range_alloc_flags |= SOS_KMEM_VMM_ATOMIC; + + /* Need physical mapping NOW ? */ + if (kslab_cache->flags & (SOS_KSLAB_CREATE_MAP + | SOS_KSLAB_CREATE_ZERO)) + range_alloc_flags |= SOS_KMEM_VMM_MAP; + + /* Allocate the range */ + new_range = sos_kmem_vmm_new_range(kslab_cache->nb_pages_per_slab, + range_alloc_flags, + & new_range_start); + if (! new_range) + return -SOS_ENOMEM; + + /* Allocate the slab structure */ + if (kslab_cache->flags & ON_SLAB) + { + /* Slab structure is ON the slab: simply set its address to the + end of the range */ + sos_vaddr_t slab_vaddr + = new_range_start + kslab_cache->nb_pages_per_slab*SOS_PAGE_SIZE + - sizeof(struct sos_kslab); + new_slab = (struct sos_kslab*)slab_vaddr; + } + else + { + /* Slab structure is OFF the slab: allocate it from the cache of + slab structures */ + sos_vaddr_t slab_vaddr + = sos_kmem_cache_alloc(cache_of_struct_kslab, + alloc_flags); + if (! slab_vaddr) + { + sos_kmem_vmm_del_range(new_range); + return -SOS_ENOMEM; + } + new_slab = (struct sos_kslab*)slab_vaddr; + } + + cache_add_slab(kslab_cache, new_range_start, new_slab); + new_slab->range = new_range; + + /* Set the backlink from range to this slab */ + sos_kmem_vmm_set_slab(new_range, new_slab); + + return SOS_OK; +} + + +/** + * Helper function to release a slab + * + * The corresponding range is always deleted, except when the @param + * must_del_range_now is not set. This happens only when the function + * gets called from sos_kmem_cache_release_struct_range(), to avoid + * large recursions. + */ +static sos_ret_t +cache_release_slab(struct sos_kslab *slab, + sos_bool_t must_del_range_now) +{ + struct sos_kslab_cache *kslab_cache = slab->cache; + struct sos_kmem_range *range = slab->range; + + SOS_ASSERT_FATAL(kslab_cache != NULL); + SOS_ASSERT_FATAL(range != NULL); + SOS_ASSERT_FATAL(slab->nb_free == slab->cache->nb_objects_per_slab); + + /* First, remove the slab from the slabs' list of the cache */ + list_delete(kslab_cache->slab_list, slab); + slab->cache->nb_free_objects -= slab->nb_free; + + /* Release the slab structure if it is OFF slab */ + if (! (slab->cache->flags & ON_SLAB)) + sos_kmem_cache_free((sos_vaddr_t)slab); + + /* Ok, the range is not bound to any slab anymore */ + sos_kmem_vmm_set_slab(range, NULL); + + /* Always delete the range now, unless we are told not to do so (see + sos_kmem_cache_release_struct_range() below) */ + if (must_del_range_now) + return sos_kmem_vmm_del_range(range); + + return SOS_OK; +} + + +/** + * Helper function to create the initial cache of caches, with a very + * first slab in it, so that new cache structures can be simply allocated. + * @return the cache structure for the cache of caches + */ +static struct sos_kslab_cache * +create_cache_of_caches(sos_vaddr_t vaddr_first_slab_of_caches, + int nb_pages) +{ + /* The preliminary cache structure we need in order to allocate the + first slab in the cache of caches (allocated on the stack !) */ + struct sos_kslab_cache fake_cache_of_caches; + + /* The real cache structure for the cache of caches */ + struct sos_kslab_cache *real_cache_of_caches; + + /* The kslab structure for this very first slab */ + struct sos_kslab *slab_of_caches; + + /* Init the cache structure for the cache of caches */ + if (cache_initialize(& fake_cache_of_caches, + "Caches", sizeof(struct sos_kslab_cache), + nb_pages, 0, SOS_KSLAB_CREATE_MAP | ON_SLAB)) + /* Something wrong with the parameters */ + return NULL; + + memset((void*)vaddr_first_slab_of_caches, 0x0, nb_pages*SOS_PAGE_SIZE); + + /* Add the pages for the 1st slab of caches */ + slab_of_caches = (struct sos_kslab*)(vaddr_first_slab_of_caches + + nb_pages*SOS_PAGE_SIZE + - sizeof(struct sos_kslab)); + + /* Add the abovementioned 1st slab to the cache of caches */ + cache_add_slab(& fake_cache_of_caches, + vaddr_first_slab_of_caches, + slab_of_caches); + + /* Now we allocate a cache structure, which will be the real cache + of caches, ie a cache structure allocated INSIDE the cache of + caches, not inside the stack */ + real_cache_of_caches + = (struct sos_kslab_cache*) sos_kmem_cache_alloc(& fake_cache_of_caches, + 0); + /* We initialize it */ + memcpy(real_cache_of_caches, & fake_cache_of_caches, + sizeof(struct sos_kslab_cache)); + /* We need to update the slab's 'cache' field */ + slab_of_caches->cache = real_cache_of_caches; + + /* Add the cache to the list of slab caches */ + list_add_tail(kslab_cache_list, real_cache_of_caches); + + return real_cache_of_caches; +} + + +/** + * Helper function to create the initial cache of ranges, with a very + * first slab in it, so that new kmem_range structures can be simply + * allocated. + * @return the cache of kmem_range + */ +static struct sos_kslab_cache * +create_cache_of_ranges(sos_vaddr_t vaddr_first_slab_of_ranges, + sos_size_t sizeof_struct_range, + int nb_pages) +{ + /* The cache structure for the cache of kmem_range */ + struct sos_kslab_cache *cache_of_ranges; + + /* The kslab structure for the very first slab of ranges */ + struct sos_kslab *slab_of_ranges; + + cache_of_ranges = (struct sos_kslab_cache*) + sos_kmem_cache_alloc(cache_of_struct_kslab_cache, + 0); + if (! cache_of_ranges) + return NULL; + + /* Init the cache structure for the cache of ranges with min objects + per slab = 2 !!! */ + if (cache_initialize(cache_of_ranges, + "struct kmem_range", + sizeof_struct_range, + nb_pages, 2, SOS_KSLAB_CREATE_MAP | ON_SLAB)) + /* Something wrong with the parameters */ + return NULL; + + /* Add the cache to the list of slab caches */ + list_add_tail(kslab_cache_list, cache_of_ranges); + + /* + * Add the first slab for this cache + */ + memset((void*)vaddr_first_slab_of_ranges, 0x0, nb_pages*SOS_PAGE_SIZE); + + /* Add the pages for the 1st slab of ranges */ + slab_of_ranges = (struct sos_kslab*)(vaddr_first_slab_of_ranges + + nb_pages*SOS_PAGE_SIZE + - sizeof(struct sos_kslab)); + + cache_add_slab(cache_of_ranges, + vaddr_first_slab_of_ranges, + slab_of_ranges); + + return cache_of_ranges; +} + + +struct sos_kslab_cache * +sos_kmem_cache_setup_prepare(sos_vaddr_t kernel_core_base, + sos_vaddr_t kernel_core_top, + sos_size_t sizeof_struct_range, + /* results */ + struct sos_kslab **first_struct_slab_of_caches, + sos_vaddr_t *first_slab_of_caches_base, + sos_count_t *first_slab_of_caches_nb_pages, + struct sos_kslab **first_struct_slab_of_ranges, + sos_vaddr_t *first_slab_of_ranges_base, + sos_count_t *first_slab_of_ranges_nb_pages) +{ + int i; + sos_ret_t retval; + sos_vaddr_t vaddr; + + /* The cache of ranges we are about to allocate */ + struct sos_kslab_cache *cache_of_ranges; + + /* In the begining, there isn't any cache */ + kslab_cache_list = NULL; + cache_of_struct_kslab = NULL; + cache_of_struct_kslab_cache = NULL; + + /* + * Create the cache of caches, initialised with 1 allocated slab + */ + + /* Allocate the pages needed for the 1st slab of caches, and map them + in kernel space, right after the kernel */ + *first_slab_of_caches_base = SOS_PAGE_ALIGN_SUP(kernel_core_top); + for (i = 0, vaddr = *first_slab_of_caches_base ; + i < NB_PAGES_IN_SLAB_OF_CACHES ; + i++, vaddr += SOS_PAGE_SIZE) + { + sos_paddr_t ppage_paddr; + + ppage_paddr + = sos_physmem_ref_physpage_new(FALSE); + SOS_ASSERT_FATAL(ppage_paddr != (sos_paddr_t)NULL); + + retval = sos_paging_map(ppage_paddr, vaddr, + FALSE, + SOS_VM_MAP_ATOMIC + | SOS_VM_MAP_PROT_READ + | SOS_VM_MAP_PROT_WRITE); + SOS_ASSERT_FATAL(retval == SOS_OK); + + retval = sos_physmem_unref_physpage(ppage_paddr); + SOS_ASSERT_FATAL(retval == FALSE); + } + + /* Create the cache of caches */ + *first_slab_of_caches_nb_pages = NB_PAGES_IN_SLAB_OF_CACHES; + cache_of_struct_kslab_cache + = create_cache_of_caches(*first_slab_of_caches_base, + NB_PAGES_IN_SLAB_OF_CACHES); + SOS_ASSERT_FATAL(cache_of_struct_kslab_cache != NULL); + + /* Retrieve the slab that should have been allocated */ + *first_struct_slab_of_caches + = list_get_head(cache_of_struct_kslab_cache->slab_list); + + + /* + * Create the cache of ranges, initialised with 1 allocated slab + */ + *first_slab_of_ranges_base = vaddr; + /* Allocate the 1st slab */ + for (i = 0, vaddr = *first_slab_of_ranges_base ; + i < NB_PAGES_IN_SLAB_OF_RANGES ; + i++, vaddr += SOS_PAGE_SIZE) + { + sos_paddr_t ppage_paddr; + + ppage_paddr + = sos_physmem_ref_physpage_new(FALSE); + SOS_ASSERT_FATAL(ppage_paddr != (sos_paddr_t)NULL); + + retval = sos_paging_map(ppage_paddr, vaddr, + FALSE, + SOS_VM_MAP_ATOMIC + | SOS_VM_MAP_PROT_READ + | SOS_VM_MAP_PROT_WRITE); + SOS_ASSERT_FATAL(retval == SOS_OK); + + retval = sos_physmem_unref_physpage(ppage_paddr); + SOS_ASSERT_FATAL(retval == FALSE); + } + + /* Create the cache of ranges */ + *first_slab_of_ranges_nb_pages = NB_PAGES_IN_SLAB_OF_RANGES; + cache_of_ranges = create_cache_of_ranges(*first_slab_of_ranges_base, + sizeof_struct_range, + NB_PAGES_IN_SLAB_OF_RANGES); + SOS_ASSERT_FATAL(cache_of_ranges != NULL); + + /* Retrieve the slab that should have been allocated */ + *first_struct_slab_of_ranges + = list_get_head(cache_of_ranges->slab_list); + + /* + * Create the cache of slabs, without any allocated slab yet + */ + cache_of_struct_kslab + = sos_kmem_cache_create("off-slab slab structures", + sizeof(struct sos_kslab), + 1, + 0, + SOS_KSLAB_CREATE_MAP); + SOS_ASSERT_FATAL(cache_of_struct_kslab != NULL); + + return cache_of_ranges; +} + + +sos_ret_t +sos_kmem_cache_setup_commit(struct sos_kslab *first_struct_slab_of_caches, + struct sos_kmem_range *first_range_of_caches, + struct sos_kslab *first_struct_slab_of_ranges, + struct sos_kmem_range *first_range_of_ranges) +{ + first_struct_slab_of_caches->range = first_range_of_caches; + first_struct_slab_of_ranges->range = first_range_of_ranges; + return SOS_OK; +} + + +struct sos_kslab_cache * +sos_kmem_cache_create(const char* name, + sos_size_t obj_size, + sos_count_t pages_per_slab, + sos_count_t min_free_objs, + sos_ui32_t cache_flags) +{ + struct sos_kslab_cache *new_cache; + + /* Allocate the new cache */ + new_cache = (struct sos_kslab_cache*) + sos_kmem_cache_alloc(cache_of_struct_kslab_cache, + 0/* NOT ATOMIC */); + if (! new_cache) + return NULL; + + if (cache_initialize(new_cache, name, obj_size, + pages_per_slab, min_free_objs, + cache_flags)) + { + /* Something was wrong */ + sos_kmem_cache_free((sos_vaddr_t)new_cache); + return NULL; + } + + /* Add the cache to the list of slab caches */ + list_add_tail(kslab_cache_list, new_cache); + + /* if the min_free_objs is set, pre-allocate a slab */ + if (min_free_objs) + { + if (cache_grow(new_cache, 0 /* Not atomic */) != SOS_OK) + { + sos_kmem_cache_destroy(new_cache); + return NULL; /* Not enough memory */ + } + } + + return new_cache; +} + + +sos_ret_t sos_kmem_cache_destroy(struct sos_kslab_cache *kslab_cache) +{ + int nb_slabs; + struct sos_kslab *slab; + + if (! kslab_cache) + return -SOS_EINVAL; + + /* Refuse to destroy the cache if there are any objects still + allocated */ + list_foreach(kslab_cache->slab_list, slab, nb_slabs) + { + if (slab->nb_free != kslab_cache->nb_objects_per_slab) + return -SOS_EBUSY; + } + + /* Remove all the slabs */ + while ((slab = list_get_head(kslab_cache->slab_list)) != NULL) + { + cache_release_slab(slab, TRUE); + } + + /* Remove the cache */ + return sos_kmem_cache_free((sos_vaddr_t)kslab_cache); +} + + +sos_vaddr_t sos_kmem_cache_alloc(struct sos_kslab_cache *kslab_cache, + sos_ui32_t alloc_flags) +{ + sos_vaddr_t obj_vaddr; + struct sos_kslab * slab_head; +#define ALLOC_RET return + + /* If the slab at the head of the slabs' list has no free object, + then the other slabs don't either => need to allocate a new + slab */ + if ((! kslab_cache->slab_list) + || (! list_get_head(kslab_cache->slab_list)->free)) + { + if (cache_grow(kslab_cache, alloc_flags) != SOS_OK) + /* Not enough memory or blocking alloc */ + ALLOC_RET( (sos_vaddr_t)NULL); + } + + /* Here: we are sure that list_get_head(kslab_cache->slab_list) + exists *AND* that list_get_head(kslab_cache->slab_list)->free is + NOT NULL */ + slab_head = list_get_head(kslab_cache->slab_list); + SOS_ASSERT_FATAL(slab_head != NULL); + + /* Allocate the object at the head of the slab at the head of the + slabs' list */ + obj_vaddr = (sos_vaddr_t)list_pop_head(slab_head->free); + slab_head->nb_free --; + kslab_cache->nb_free_objects --; + + /* If needed, reset object's contents */ + if (kslab_cache->flags & SOS_KSLAB_CREATE_ZERO) + memset((void*)obj_vaddr, 0x0, kslab_cache->alloc_obj_size); + + /* Slab is now full ? */ + if (slab_head->free == NULL) + { + /* Transfer it at the tail of the slabs' list */ + struct sos_kslab *slab; + slab = list_pop_head(kslab_cache->slab_list); + list_add_tail(kslab_cache->slab_list, slab); + } + + /* + * For caches that require a minimum amount of free objects left, + * allocate a slab if needed. + * + * Notice the "== min_objects - 1": we did not write " < + * min_objects" because for the cache of kmem structure, this would + * lead to an chicken-and-egg problem, since cache_grow below would + * call cache_alloc again for the kmem_vmm cache, so we return here + * with the same cache. If the test were " < min_objects", then we + * would call cache_grow again for the kmem_vmm cache again and + * again... until we reach the bottom of our stack (infinite + * recursion). By telling precisely "==", then the cache_grow would + * only be called the first time. + */ + if ((kslab_cache->min_free_objects > 0) + && (kslab_cache->nb_free_objects == (kslab_cache->min_free_objects - 1))) + { + /* No: allocate a new slab now */ + if (cache_grow(kslab_cache, alloc_flags) != SOS_OK) + { + /* Not enough free memory or blocking alloc => undo the + allocation */ + sos_kmem_cache_free(obj_vaddr); + ALLOC_RET( (sos_vaddr_t)NULL); + } + } + + ALLOC_RET(obj_vaddr); +} + + +/** + * Helper function to free the object located at the given address. + * + * @param empty_slab is the address of the slab to release, if removing + * the object causes the slab to become empty. + */ +inline static +sos_ret_t +free_object(sos_vaddr_t vaddr, + struct sos_kslab ** empty_slab) +{ + struct sos_kslab_cache *kslab_cache; + + /* Lookup the slab containing the object in the slabs' list */ + struct sos_kslab *slab = sos_kmem_vmm_resolve_slab(vaddr); + + /* By default, consider that the slab will not become empty */ + *empty_slab = NULL; + + /* Did not find the slab */ + if (! slab) + return -SOS_EINVAL; + + SOS_ASSERT_FATAL(slab->cache); + kslab_cache = slab->cache; + + /* + * Check whether the address really could mark the start of an actual + * allocated object + */ + /* Address multiple of an object's size ? */ + if (( (vaddr - slab->first_object) + % kslab_cache->alloc_obj_size) != 0) + return -SOS_EINVAL; + /* Address not too large ? */ + if (( (vaddr - slab->first_object) + / kslab_cache->alloc_obj_size) >= kslab_cache->nb_objects_per_slab) + return -SOS_EINVAL; + + /* + * Ok: we now release the object + */ + + /* Did find a full slab => will not be full any more => move it + to the head of the slabs' list */ + if (! slab->free) + { + list_delete(kslab_cache->slab_list, slab); + list_add_head(kslab_cache->slab_list, slab); + } + + /* Release the object */ + list_add_head(slab->free, (struct sos_kslab_free_object*)vaddr); + slab->nb_free++; + kslab_cache->nb_free_objects++; + SOS_ASSERT_FATAL(slab->nb_free <= slab->cache->nb_objects_per_slab); + + /* Cause the slab to be released if it becomes empty, and if we are + allowed to do it */ + if ((slab->nb_free >= kslab_cache->nb_objects_per_slab) + && (kslab_cache->nb_free_objects - slab->nb_free + >= kslab_cache->min_free_objects)) + { + *empty_slab = slab; + } + + return SOS_OK; +} + + +sos_ret_t sos_kmem_cache_free(sos_vaddr_t vaddr) +{ + sos_ret_t retval; + struct sos_kslab *empty_slab; + + /* Remove the object from the slab */ + retval = free_object(vaddr, & empty_slab); + if (retval != SOS_OK) + return retval; + + /* Remove the slab and the underlying range if needed */ + if (empty_slab != NULL) + return cache_release_slab(empty_slab, TRUE); + + return SOS_OK; +} + + +struct sos_kmem_range * +sos_kmem_cache_release_struct_range(struct sos_kmem_range *the_range) +{ + sos_ret_t retval; + struct sos_kslab *empty_slab; + + /* Remove the object from the slab */ + retval = free_object((sos_vaddr_t)the_range, & empty_slab); + if (retval != SOS_OK) + return NULL; + + /* Remove the slab BUT NOT the underlying range if needed */ + if (empty_slab != NULL) + { + struct sos_kmem_range *empty_range = empty_slab->range; + SOS_ASSERT_FATAL(cache_release_slab(empty_slab, FALSE) == SOS_OK); + SOS_ASSERT_FATAL(empty_range != NULL); + return empty_range; + } + + return NULL; +} + -- cgit v1.2.3