
The NARP protocol speci�cation

A Generic Recursive Communication Protocol for Networked
Applications

In this document we explain the purpose and provide a draft speci�cation for the NARP protocol, a
general-purpose networking protocol destined to be used in many layers of a new operating system
and networking system.

1 Introduction

We begin by remarking that a basic operation in all computer operation processes consists in
naming objects and providing acces to these named objects. Here are a few examples of naming
in real use cases:

� Naming of �les on a local or distant �le system

� Naming of devices in the /dev virtual �lesystem on Unix machines

� Naming of networked machines (with IP adresses and DNS records)

� Naming of internet ressources over protocols such as HTTP, IMAP, IRC, spec�c web ser-
vices, ...

We propose here a novel architecture with the purpose of unifying all the naming happening at all
levels of the system, with two base concepts : objects and service.

� objects are ressources that may implement di�erent semantics : bidirectionnal communica-
tion (such as sockets) ; unidirectionnal communication (FIFO-like) ; �le semantics ; etc.

� services are a way of naming objects, querying the interfaces they implement, and multi-
plexing communications with them

We suggest that a NARP service may be provided on any bidirectionnal channel of communication
supporting the (reliable) sending and recieving of messages. In addition, NARP objects may
implement such a send/recieve interface ; therefore a NARP service can be channeled into an
object. Such a construction of using a NARP object to access a NARP service is a fundamental
operation that we call recursive multiplexing, or just multiplexing .

The NARP protocol is a client/server protocol meant to include a variety of di�erent operations
that may or may not be implemented by a speci�c NARP server.

2 High-level overview

2.1 The basic operations on services and objects

A NARP service is basically any object that implements the following operations:

� query : get information on a ressource identi�ed by name

� list : know the names of ressources presented by the service (possibly in a speci�c sub-path)

� attach : get an object interface for accessing a ressource, identi�ed by name

1



A NARP object is basically any object that implements the following operations :

� send : send a message (an arbitrary byte string) to the object

� recieve : recieve a message from the object (this may be done asynchronously with handler
functions)

� detach : delete object connection

2.2 The basics of the NARP protocol

Given any interface with send/recieve capabilities considered as an assymetric (client/server) con-
�guration, the following client messages consitute the basics of the NARP protocol for providing
a NARP service on the interface:

� hello : initialize a connection, check version information, ...

� authenticate and appropriate response messages : use credentials (user/password or access
token) to gain acces to some ressources provided by the server (the protocol is thus statefull)

� walk, list and appropriate response messages : get information about the available
ressources

� attach and appropriate response messages : give an identi�er (a descriptor) to a ressource
in order to communicate with it

� send and appropriate response messages : send a message to an attached ressource, identi�ed
by its descriptor

� detach : close a descriptor and detach from a ressource

� create, delete, rename, link : requests the creation or modi�cation of a ressource in the
namespace

The server may also at any moment send a message, including:

� a response to a query

� recieve : a noti�cation of a message sent from the object to the client

� detached : the connection to the object has been terminated by the object server

2.3 Recursion

If an object is a NARP server, the messages sent to it and recieved from it are messages of the
NARP protocol. Otherwise, they are arbitrary.

2.4 Reverse object

Some NARP servers may support reverse object serving: the client creates an object on the server
and handles all the requests arriving to this object (therefore the initial NARP server only serves as
a relay between the new server and its clients1). A client wishing to act as a reverse object server
may use the following commands:

� serve : listen for attach requests on a servable (empty) object created in the server name-
space (if authorized)

1. Research is to be done on shortcuttingmechanisms in speci�c situations where toomany levels of recursion cause
a performance issue.

2



� accept and reject : accept (or reject) an attach request to the object

� detach : close connection between object and client (this is the same detach message as in
standard communications)

� unserve : stop serving for the object. Attached clients continue to be attached.

The server may in turn send the following messages concerning the server object:

� attach_request : a client is willing to attach to the object. A descriptor is already associ-
ated to the connection to be established, but the server may reject it.

Once a client is attached to the object, a classical send/recieved interface is provided.

Typically, the protocol exchanged over the object is NARP protocol, therefore enabling the reverse
server to provide its own namespace and other functionnality.

2.5 Speci�c object types and associated messages

2.5.1 Objects are sockets

Sockets are the basis of the NARP protocol : attaching to an objects opens a socket connection to
the process serving the object, and when the connection is accepted, basic send/recieve function-
nality is provided. See also the reverse object protocol described in section 2.4.

2.5.2 File objects

Small �les may implement the following interface:

� put : erase the whole �le and put the transmitted content

� get : retrieve the whole �le content

Big �les may implement the following interface:

� write : write a portion of the �le at a given o�set

� read : read a portion of the �le at a given o�set

2.5.3 User IO (terminals...)

Virtual terminals can be seen as objects implementing a simple send/recieve semantic, where the
data transmitted is unstructured (or structured given a speci�c terminal data structure). More
speci�c interfaces can be de�ned for advanced terminals and GUIs.

2.5.4 Speci�c applications

Speci�c applications may de�ne custom messages. Examples include:

� e-mail

� instant messaging

� collaborative editing of text-based documents

and many other applications yet to be invented.

3



2.6 Big messages

The message size in the NARP protocol is limited to 64kb, and recommended not to exceed
4kb+header (4kb is the size of a memory page on many machines). Therefore a possibility would
be for the NARP protocol to include a way to transmit big messages by fragmenting them into
small messages. Optionnal error correction may be included. This can be useful for example
when using put or get on large �les, or reads and writes of big �le portions. The recieving of a
large fragmented message may have a speci�c implementation allowing the reciever to work with
the partial data as soon as it starts arriving and not having to wait for the whole message to be
transmitted and bu�ered. Research is yet to be done on this speci�c subject.

2.7 Permissions

For each attached client the server may keep track of associated permissions, and accept or reject
requests according to those permissions. The client may use an authentication command to gain
supplementary privileges on the server's ressources. The client may request a token to delegate it's
privileges on a given object to another client. Advanced right management functionnalities are to
be discussed.

2.8 Reliability concerns

The NARP protocol relies on the fact that when transmitting a message, the other end will recieve
it. It is nevertheless recommended that NARP implementations support the repeating of messages
if an expected acknowlegment has not arrived after a given delay.

2.9 Example NARP servers

2.9.1 Virtual NARP server (i.e. NARP router)

This server implements a namespace where any client may create an empty object and serve
connections to it. Additionnaly, the server may implement the possibility to create virtual �les,
virtual directories, FIFO queues, etc.

This server may be connected to other virtual NARP servers in order to provide a global namespace
accessible to all. Each virtual NARP server acts as an endpoint into the network and may have
functionnality for routing the communications to objects to the clients that serve them.

2.9.2 NARP �le server

This server simply implements access to a �lesystem : listed ressources are the same as the �les
present in a served directory, each of these implements the �ling protocol (served directly by the
�le server), and the creation of �les/directories may also be implemented.

2.9.3 NARP terminal/GUI server

Clients may create objects on the server ; each of these objects correspond to a GUI window.
Two interfaces may be implemented : text IO (terminal) and graphical interaction. Advanced
terminal interaction features may be implemented at the protocol level, such as auto-completion
of commands or of text being edited...

Suggestion for a third kind of window : the data sent by the client corresponds to a description
of the scene in a given markup language and the server does the rendering. The client can also
subscribed to events such as clicking on an item or entering text. This possibility is to be explored.

2.9.4 NARP e-mail and newsgroup server

Several features to be implemented:

� user login and private user mailboxes

4



� bridge to standard SMTP/POP3/IMAP services

� private threads of conversation with access rights (the users don't each have a copy of the
thread)

� synchronization between many servers

� public discussion forums

2.9.5 NARP chat server

� user login and status noti�cation

� online and o�ine private messaging

� public chat rooms, chat room logging independently of user being online or o�ine

� bridging and synchronization between many servers

2.9.6 NARP applicative server

TODO...

3 Speci�cs of the NARP protocol

3.1 Protocol description format

A protocol message is given in the following form:

element type element type ... element type
element description element description ... element description

The following element types apply:

� int16, int32, int64 : 16-bit, 32-bit or 64-bit little-endian integers

� str : a string, pre�xed by a 16-bit length header

� arr(T ) : an array of T 's (where T is another element type), pre�xed by a 16-bit length header

� * (for the last element) : consider all the rest of the message as a byte string

3.2 Basic message format

The basic format of a message is :

int16 int16 *
message size message type payload

We will abbreviate by �header� the �rst 32 bits (4 bytes) of the message. The list of message types
is given in section 3.7.1.

Messages for communication with an attached ressource will have the following format :

int16 int16 int32 *
message size message type ressource descriptor (handle) payload

Many client messages awating a response will have a message ID included ; this message ID is an
arbitrary number generated by the client and used by the server when giving its response. The
header then looks like this:

5



int16 int16 int32 *
message size message type message ID payload

3.3 Message list for core NARP protocol

Client messages have an up arrow (") next to their name, while server messages have a down arrow
(#).

The core NARP protocol is meant for small size and rapidity (so that many layers can be encapsu-
lated with minimal overhead), therefore no acknowlegment is to be sent for recursive send/recieve
messages. Other messages usually imply some kind of action or getting of information, therefore
an acknowlegment or an error is usually sent as a response.

Hello"#

int32 arr(int32)
header version list of needed/provided interfaces

When a NARP connection is established, the client is always the �rst to send aHello message.
The object may then respond either with aHello message indicating that the requested inter-
faces can be provided, or with an Error message. The two common error causes are interface
not implemented and incompatible versions .

For interface numbers : see table in section 3.7.3.

Error#

Generic error response message for any operation.

int32 int32 str
header request ID error ID error string

Common error IDs are speci�ed in section 3.7.2.

Ack#

int32
header request ID

Generic acknowlegment message for commands that require it. An acknowlege implies the
command has been sucessfully executed (otherwise an error message is sent).

Stat"

int32 str
header request ID �lename

The request ID is an ID decided by the client so that it can identify the answer.

StatR# Response to the Stat message.

int32 arr(int32)
header request ID implemented interface

Common interface numbers are to be found in section 3:7:3.

If a Stat query on an object gives a certain list of interfaces, then when connecting to the
object at least all these interfaces must be included in the server'sHello message as supported
interfaces.

Note that some interface numbers correspond to actions that can be done on the object from
the connection where the object exists (e.g. : symbolic link, directory), and others correspond
to actions that can be performed after attaching to the object (e.g. �le, terminal, ...)

6



List"

int32 int32 int32 str
header request ID �rst entry number number of entries requested base path string

ListR# Response to the List message.

One message is passed for each entry in the requested range:

int32 int32 str
header request ID entry number entry name

After the directory has �nished being enumerated, a supplementary entry is given with entry
number the last valid entry number plus one and an empty entry name. This supplementary
entry is only given if its (�cious) entry number is included in the range requested by the client.

Possible extension : combine List and Stat so that when the answer to List is given, information
is also given on the object's implemented interfaces.

Attach"

int32 str
header request ID �lename

Attached# Response to the Attach command.

int32 int32
header request ID handle

(the handle, ie the ressource descriptor, is attributed by the server)

Send"

int32 *
header handle payload

This message does not expect a response.

Recieve#

Spontaneous server message indicating some data is sent by an attached ressource. This message
does not expect a response.

int32 *
header handle payload

Detach"

int32
header handle

This message does not expect a response.

Detached#

Spontaneous server message indicating the object has been detached.

int32
header handle

Create"

int32 arr(int32) str
header request ID needed interfaces path

7



A create request is accompanied with a list of needed interfaces that direct the server into
creating the corresponding type of object (e.g. an empty object to be served, a directory, a �le,
...)

Created# Response to the Create command.

int32 arr(int32)
header request ID implemented interfaces

Signals that the object has been created, and has corresponding interfaces associated to it.

Delete"

int32 str
header request ID path

This message expects a standard Ack response message.

Link"

int32 str str
header request ID destination path link path

This message expects a standard Ack response message.

Semantics of the link object:

� attaching or serving on this objects corresponds to resolving the linked path and
attaching/serving on the linked object

� stating the link will stat the linked object and add as an implemented interface the �this
is a symlink� information

� directory listings follow links

� deleting the link will not delete the original �le but only the link

ReadLink"

int32 str
header request ID path

ReadLinkR# Response to the ReadLink message.

int32 str
header request ID link description

This will only return the �rst level of linking, ie the link data directly associated to the link
object.

Rename"

int32 str str
header request ID original path new path

This message expects a standard Ack response message.

Serve"

int32 str array(int32)
header request ID path announced interfaces

8



This message is a request for the client to be a reverse server to an object. The response message
to this message is an Attached message. The handle attributed to the served object is known
as the server handle and is used in the Incoming and Detach messages.

To stop serving an object, the client simply sends a Detach command on the server handle.
The semantics is that all connections that have been openned through the reverse-served object
are preserved when the object stops being served, and an individual Detach message must be
sent to all of them if we want to close them.

The announced interfaces serves to answer Stat messages on the object while we are serving it.

Incoming#

int32 int32
header server handle client hande

This message is sent by the server when another client wishes to attach to an object reverse-
served by this client. The server handle is the one given as a response to the Serve message.
The client handle is a handle associated to the connection. The reverse server may reject the
connection by issuing a Detach command on the client handle, or may accept it using the
Accept message given below.

Accept"

int32
header client handle

Once a connection has been accepted, the reverse server may at any moment close it by sending
a Detach command on the corresponding client handle.

Unbox"

int32 int32 int32
header request ID outer handle inner handle

Consider the handle outer handle as a NARP protocol service, and associate a handle in the
outer layer to the handle of the inner layer with handle inner handle .

Example : in connection A we have a connection open on handle 5 which contains NARP data
that we will call B, and in connection B we have another connection open on handle 7. Issuing
a Unbox(id, 5, 7) request on A will lead to the server creating a handle (say 12) where sending
corresponds to sending a message to handle 7 on connection B, and such that all messages
recieved on handle 5 (ie on connection B) are �ltered and messages whose destination is handle
7 on connection B are removed from the stream and issued on handle 12 of connection A instead.

The answer to such a request is an Attached response giving a handle to the unboxed con-
nection.

Systematically unboxing open connections may lead in some cases to the network infrastructure
being able to do simpli�cations in the interconnections. In other cases it may result to useless
overhead on the server side : in such a case the server may refuse an unbox request.

Plug"

int32 int32 int32
header request ID handle A handle B

Ask the server to redirect all messages recieved on handle A to handle B and all mesages
recieved on handle B to handle A. The messages recieved on either handle are not sent to the
client anymore.

The answer messages are standard Ack/Error messages.

9



Unplug"

int32 int32 int32
header request ID handle A handle B

Undoes a plugging.

3.4 Big message protocol

To be de�ned. Is it really usefull? What role exactly does it have? Can it implement repetition in
the case where the message hasn't been acknowledge? ...

3.5 Authenti�cation and rights managment commands

Authenticate"

int32 int32 *
header message ID authenti�cation method authenti�cation data

Used to gain access using credentials (user/password, token, ...). Response messages are stan-
dard Ack on success or Error on failure. Autenti�cation methods include :

� 1 : user + password

� 2 : token

NewToken"

int32 str
header message ID path

Requests the server to create an authentication token for accessing a given object with the
privileges of the connected client. Once the token has been returned, it may be transmitted to
another client so that that client will use it to gain same access to the object.

NewTokenR# Response to the NewToken message.

int32 str
header message ID token

TODO : request account creation, manage user groups and ACLs, ...

3.6 TODO

� �le protocol

� system protocols (see section on OS design using NARP)

� UI protocols (terminal, GUI)

� communication protocols (mail, IM)

3.7 Table of IDs

The tables presented in this section give the number associated to the message types. These tables
are the reference on the subject ; any information found somewhere else is wrong if it is not the
same as found here. This is for protocol version 1.

10



3.7.1 Message types

Base protocol

message " id # id message " id # id
Hello 0 10000 Stat / StatR 10 10010
Error 10001 List / ListR 11 10011
Ack 10002 Create / Created 12 10012

Delete 13
Attach / Attached 5 10005 Rename 14
Send / Recieve 6 10006 Link 15
Detach / Detached 7 10007 ReadLink / ReadLinkR 16 10016
Serve 8
Incoming 10008 Unbox 20
Accept 9 Plug 21

Unplug 22

Authentication & privileges

message " id # id
Authenticate 30
NewToken / NewTokenR 31 10031

3.7.2 Error messages

id cause
1 Incompatible versions
2 Command/interface not implemented
3 Invalid request (e.g. : out of bounds)
4 Invalid handle
5 Attach request rejected
6 Action impossible because object is in use (cannot delete, ...)
7 No such object (invalid path)
8 Could not resolve link
9 Incorrect credentials
10 Unauthorized

3.7.3 Object interfaces

id name must implement messages
0 servable Serve, Accept, Incoming
1 enumerable List, ListR
2 is symlink ReadLink, ReadLinkR

9 non-NARP inside once attached, inside data is arbitrary
10 NARP service once attached, inside data is a NARP service (ie has objects, ...)
11 NARP unbox once attached, Unbox command supported
12 NARP plug once attached, Plug and Unplug commands supported

20 �le once attached, �le semantics
21 terminal once attached, terminal semantics
22 graphics window once attached, GUI semantics

Servable This interface speci�es that the object is currently an empty object waiting for someone
to issue a Serve command on it, providing it with an implementation of some interfaces.

11



non-NARP inside This interfaces indicates that once attached to the object, the messages
sent/recieved to it are not supposed to be NARP format but any arbitrary format. If this interface
is not speci�ed, then it is expected that the messages transmitted will follow the general NARP
protocol (message format, standard hello/ack/error messages).

NARP service This interface indicates that once attached to the object, one can have access
to a new NARP namespace where at least the following operations are supported : Stat, Attach,
Send, Recieve, Detach. Additionnal messages may or may not be supported.

4 Architecture of a NARP implementation in OCaml or
Haskell

An asynchronous implementation can be easily programmed in functionnal languages such as
OCaml or Haskell, using closures as continuations for what to do when a (response) message
arrives.

TODO

5 Using NARP to design an Operating System

When designing the NARP protocol, we had in mind that it would be possible to use it in a
new operating system design at many levels : access to devices, process management, memory
management, �lesystems, IPC, GUI, ...

Kernel helpers could be developped so that a part of the NARP multiplexing and demultiplexing
takes place in kernel land, before messages are passed to userspace. For instance, this would allow
the simpli�cation of useless mux-demux chains taking place on the same machine. The mux-
demux helper can be implemented via the Unbox protocol message, handled at the level of the
root stream of NARP communication with the kernel. Another possible helper would be to map
a virtual memory region to a NARP ressource implementing a standard �ling protocol, much like
memory mapped �les in standard OSes (only this would work with arbitrary ressources).

In this section we will develop on a concrete proposal for a NARP-based operating system.

5.1 Architecture of the OS

The basic primitive of the system being message-passing, the system looks a lot like a micro-
kernel. Only the message format has a complex semantic and the communication layer is not
really �simple�. Furthermore, the system has device drivers, �le system and networking running as
kernel-mode processes, making the kernel more monolithic (but still having a micro-kernel spirit).
It should be easy to make any user mode process run as a kernel mode process instead, for the
sake of performance (eg : graphical server & compositor).

The kernel land is divided in three major parts, with strict dependency order:

� Level 0 : System ressource managment : physical memory, virtual memory, hardware inter-
action (IRQ, v86), debug output

� Level 1 : Scheduler, IPC & NARP core server : builds on top of level 0, adds support for
processes and communication between them restricted to NARP protocol data.

� Level 2 : System processes : hardware, �le systems, network, ... (may access level 0 and level
1 features)

User processes are restricted to syscalls that call level 1 primitives.

12



Here are a few basic principles for the design of these three levels :

� Level 2 processes may not communicate directly nor share memory : they must go through
level 0 and level 1 primitives to achieve such a goal. Each level 2 process has a separate
heap, which is completely freed when the process dies. Level 2 processes do not use separate
virtual memory spaces : since the kernel memory space is mapped in all page directories, a
level 2 process may run with any page directory.

Bene�ts : critical system parts are restricted to level 0 and level 1. Level 2 components may
leak or crash with less consequences.

� All synchronization & locking is handle by level 1, except for level 0 that must implement
its own locking devices (since it cannot rely on level 1).

Bene�ts : no complex synchronization in most of the code (which is either level 2 or user-
land), only simple message passing and waiting for stu� to happen

� No concept of �threads� : system processes are actually kernel threads, but we call them
processes since they use separate parts of memory. Userlands processes cannot spawn mul-
tiple threads of execution either : they must fork and communicate through NARP if they
want to do so (eg: launching an expensive communication in the background).

(since fork is a complicated system call, and features such as copy-on-write depend on
processes using di�erent paging directories, the fork system call is accessible only to userland
processes : level 2 processes may not fork, but only create new processes)

� Level 1 also has a memory heap ; it is used with core_malloc/core_free. Level 2 proceses
use standard malloc/free, which are modi�ed to act on the heap of the current process.

� Each process (system or user) has a mailbox , ie a queue of incoming NARP messages waiting
to be transferred. The mailbox has a maximum size (bu�er size), and a send call may fail
with a no space left in queue error. This is the only possible failure for a send call.

System processes (level 2) spend most of their time in waiting mode ; they may be waked up
by either recieving a NARPmesssage or by a hardware event. Therefore the wait_for_event
function that composes the main loop may return either : a message was recieved or a
system event happenned. If the reason is a message was recieved, the process is free not to
read the message immediately.

On the other hand, user processes can wait for only one thing : recieving a NARP message.
Each user process has amessage zone in its memory space, and the wait for message function
just copies the �rst message of the mailbox into this zone (overwriting whatever was there
before) and returns control to the process (returning the length of the message).

� Handling of IRQs : some hardware stu� requires action as soon as the interrupt is �red,
therefore a speci� IRQ handler may be used. Such a handler must do as little as possible,
and when it is done signal level 1 that an IRQ has happenned (it may add speci�c data to
the �IRQ happenned� message). Level 1 adds a message to the queue of the recipient process
(if there is one) and returns immediately : the IRQ handler must leave as soon as possible.
An IRQ is handled on whatever stack is currently used, and the IF �ag is constantly o�
while the IRQ handler is running. The timer IRQ is the only one that behaves di�erently,
since it has to trigger a task switch.

5.2 Steps of the developpment of the OS

1. Develop level 0 completely and with cleanest possible design

2. Develop level 1 with only basic funcionnality

13



3. Develop some basic applications in level 2 : display, keyboard, mini kernel shell, mini �le
system, ...

4. Improve level 1 with more complex stu� ; try to quickly attain a complete level 1

5. Work on the rest of the stu�

14


	1 Introduction
	2 High-level overview
	2.1 The basic operations on services and objects
	2.2 The basics of the NARP protocol
	2.3 Recursion
	2.4 Reverse object
	2.5 Specific object types and associated messages
	2.5.1 Objects are sockets
	2.5.2 File objects
	2.5.3 User IO (terminalsâ•¦)
	2.5.4 Specific applications

	2.6 Big messages
	2.7 Permissions
	2.8 Reliability concerns
	2.9 Example NARP servers
	2.9.1 Virtual NARP server (i.e. NARP router)
	2.9.2 NARP file server
	2.9.3 NARP terminal/GUI server
	2.9.4 NARP e-mail and newsgroup server
	2.9.5 NARP chat server
	2.9.6 NARP applicative server


	3 Specifics of the NARP protocol
	3.1 Protocol description format
	3.2 Basic message format
	3.3 Message list for core NARP protocol
	Helloâƒ‚âƒﬁ
	Errorâƒﬁ
	Ackâƒﬁ
	Statâƒ‚
	StatRâƒﬁ
	Listâƒ‚
	ListRâƒﬁ
	Attachâƒ‚
	Attachedâƒﬁ
	Sendâƒ‚
	Recieveâƒﬁ
	Detachâƒ‚
	Detachedâƒﬁ
	Createâƒ‚
	Createdâƒﬁ
	Deleteâƒ‚
	Linkâƒ‚
	ReadLinkâƒ‚
	ReadLinkRâƒﬁ
	Renameâƒ‚
	Serveâƒ‚
	Incomingâƒﬁ
	Acceptâƒ‚
	Unboxâƒ‚
	Plugâƒ‚
	Unplugâƒ‚

	3.4 Big message protocol
	3.5 Authentification and rights managment commands
	Authenticateâƒ‚
	NewTokenâƒ‚
	NewTokenRâƒﬁ

	3.6 TODO
	3.7 Table of IDs
	3.7.1 Message types
	Base protocol
	Authentication & privileges

	3.7.2 Error messages
	3.7.3 Object interfaces
	Servable
	non-NARP inside
	NARP service



	4 Architecture of a NARP implementation in OCaml or Haskell
	5 Using NARP to design an Operating System
	5.1 Architecture of the OS
	5.2 Steps of the developpment of the OS


