summaryrefslogtreecommitdiff
path: root/lstm.py
blob: e294793c63d83e7653879364d7f8ee3797a9b500 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import theano
from theano import tensor
import numpy

from blocks.algorithms import Momentum, AdaDelta, RMSProp
from blocks.bricks import Tanh, Softmax, Linear, MLP
from blocks.bricks.recurrent import LSTM
from blocks.initialization import IsotropicGaussian, Constant

from blocks.filter import VariableFilter
from blocks.roles import WEIGHT
from blocks.graph import ComputationGraph, apply_noise, apply_dropout

# An epoch will be composed of 'num_seqs' sequences of len 'seq_len'
# divided in chunks of lengh 'seq_div_size'
num_seqs = 20
seq_len = 2000
seq_div_size = 100

io_dim = 256

hidden_dims = [512, 512, 512]
activation_function = Tanh()

i2h_all = True             # input to all hidden layers or only first layer
h2o_all = True             # all hiden layers to output or only last layer

w_noise_std = 0.01
i_dropout = 0.5

step_rule = 'momentum'
learning_rate = 0.1
momentum = 0.9


param_desc = '%s-%sIH,%sHO-n%s-d%s-%dx%d(%d)-%s' % (
                 repr(hidden_dims),
                 'all' if i2h_all else 'first',
                 'all' if h2o_all else 'last',
                 repr(w_noise_std),
                 repr(i_dropout),
                 num_seqs, seq_len, seq_div_size,
                 step_rule
                ) 

save_freq = 5

# parameters for sample generation
sample_len = 60
sample_temperature = 0.3

if step_rule == 'rmsprop':
    step_rule = RMSProp()
elif step_rule == 'adadelta':
    step_rule = AdaDelta()
elif step_rule == 'momentum':
    step_rule = Momentum(learning_rate=learning_rate, momentum=momentum)
else:
    assert(False)

class Model():
    def __init__(self):
        inp = tensor.lmatrix('bytes')

        in_onehot = tensor.eq(tensor.arange(io_dim, dtype='int16').reshape((1, 1, io_dim)),
                              inp[:, :, None])
        in_onehot.name = 'in_onehot'

        # Construct hidden states
        dims = [io_dim] + hidden_dims
        states = [in_onehot.dimshuffle(1, 0, 2)]
        bricks = []
        updates = []
        for i in xrange(1, len(dims)):
            init_state = theano.shared(numpy.zeros((num_seqs, dims[i])).astype(theano.config.floatX),
                                       name='st0_%d'%i)
            init_cell = theano.shared(numpy.zeros((num_seqs, dims[i])).astype(theano.config.floatX),
                                       name='cell0_%d'%i)

            linear = Linear(input_dim=dims[i-1], output_dim=4*dims[i],
                            name="lstm_in_%d"%i)
            bricks.append(linear)
            inter = linear.apply(states[-1])

            if i2h_all and i > 1:
                linear2 = Linear(input_dim=dims[0], output_dim=4*dims[i],
                                 name="lstm_in0_%d"%i)
                bricks.append(linear2)
                inter = inter + linear2.apply(states[0])
                inter.name = 'inter_bis_%d'%i

            lstm = LSTM(dim=dims[i], activation=activation_function,
                        name="lstm_rec_%d"%i)
            bricks.append(lstm)

            new_states, new_cells = lstm.apply(inter,
                                               states=init_state,
                                               cells=init_cell)
            updates.append((init_state, new_states[-1, :, :]))
            updates.append((init_cell, new_cells[-1, :, :]))

            states.append(new_states)

        states = [s.dimshuffle(1, 0, 2) for s in states]

        # Construct output from hidden states
        out = None
        layers = zip(dims, states)[1:]
        if not h2o_all:
            layers = [layers[-1]]
        for i, (dim, state) in enumerate(layers):
            top_linear = Linear(input_dim=dim, output_dim=io_dim,
                                name='top_linear_%d'%i)
            bricks.append(top_linear)
            out_i = top_linear.apply(state)
            out = out_i if out is None else out + out_i
            out.name = 'out_part_%d'%i

        # Do prediction and calculate cost
        pred = out.argmax(axis=2)

        cost = Softmax().categorical_cross_entropy(inp[:, 1:].flatten(),
                                                   out[:, :-1, :].reshape((inp.shape[0]*(inp.shape[1]-1),
                                                                           io_dim)))
        error_rate = tensor.neq(inp[:, 1:].flatten(), pred[:, :-1].flatten()).mean()

        # Initialize all bricks
        for brick in bricks:
            brick.weights_init = IsotropicGaussian(0.1)
            brick.biases_init = Constant(0.)
            brick.initialize()

        # Apply noise and dropout
        cg = ComputationGraph([cost, error_rate])
        if w_noise_std > 0:
            noise_vars = VariableFilter(roles=[WEIGHT])(cg)
            cg = apply_noise(cg, noise_vars, w_noise_std)
        if i_dropout > 0:
            cg = apply_dropout(cg, states[1:], i_dropout)
        [cost_reg, error_rate_reg] = cg.outputs

        self.cost = cost
        self.error_rate = error_rate
        self.cost_reg = cost_reg
        self.error_rate_reg = error_rate_reg
        self.out = out
        self.pred = pred

        self.updates = updates