#!/usr/bin/env python2 import logging import sys import importlib logging.basicConfig(level='INFO') logger = logging.getLogger(__name__) import theano from blocks.extensions import Printing, SimpleExtension, FinishAfter, ProgressBar from blocks.extensions.monitoring import DataStreamMonitoring, TrainingDataMonitoring from blocks.graph import ComputationGraph from blocks.main_loop import MainLoop from blocks.model import Model from blocks.algorithms import GradientDescent try: from blocks.extras.extensions.plot import Plot plot_avail = True except ImportError: plot_avail = False logger.warning('Plotting extension not available') import datastream from paramsaveload import SaveLoadParams from gentext import GenText sys.setrecursionlimit(500000) class ResetStates(SimpleExtension): def __init__(self, state_vars, **kwargs): super(ResetStates, self).__init__(**kwargs) self.f = theano.function( inputs=[], outputs=[], updates=[(v, v.zeros_like()) for v in state_vars]) def do(self, which_callback, *args): self.f() if __name__ == "__main__": if len(sys.argv) < 2: print >> sys.stderr, 'Usage: %s [options] config' % sys.argv[0] sys.exit(1) model_name = sys.argv[-1] config = importlib.import_module('.%s' % model_name, 'config') # Build datastream train_stream = datastream.setup_datastream(config.dataset, config.num_seqs, config.seq_len, config.seq_div_size) # Build model m = config.Model(config) # Train the model cg = Model(m.sgd_cost) algorithm = GradientDescent(cost=m.sgd_cost, step_rule=config.step_rule, parameters=cg.parameters) algorithm.add_updates(m.states) monitor_vars = list(set(v for p in m.monitor_vars for v in p)) extensions = [ ProgressBar(), TrainingDataMonitoring( monitor_vars, prefix='train', every_n_batches=config.monitor_freq), Printing(every_n_batches=config.monitor_freq, after_epoch=False), ResetStates([v for v, _ in m.states], after_epoch=True) ] if plot_avail: plot_channels = [['train_' + v.name for v in p] for p in m.monitor_vars] extensions.append( Plot(document='text_'+model_name, channels=plot_channels, # server_url='http://localhost:5006', every_n_batches=config.monitor_freq) ) if config.save_freq is not None and not '--nosave' in sys.argv: extensions.append( SaveLoadParams(path='params/%s.pkl'%model_name, model=cg, before_training=(not '--noload' in sys.argv), after_training=True, every_n_batches=config.save_freq) ) if config.sample_freq is not None: extensions.append( GenText(m, config.sample_init, config.sample_len, config.sample_temperature, before_training=True, every_n_batches=config.sample_freq) ) main_loop = MainLoop( model=cg, data_stream=train_stream, algorithm=algorithm, extensions=extensions ) main_loop.run() main_loop.profile.report() # vim: set sts=4 ts=4 sw=4 tw=0 et :