import theano from theano import tensor import numpy from blocks.algorithms import Momentum, AdaDelta, RMSProp from blocks.bricks import Tanh, Softmax, Linear, MLP from blocks.bricks.recurrent import LSTM from blocks.initialization import IsotropicGaussian, Constant from blocks.filter import VariableFilter from blocks.roles import WEIGHT from blocks.graph import ComputationGraph, apply_noise, apply_dropout # An epoch will be composed of 'num_seqs' sequences of len 'seq_len' # divided in chunks of lengh 'seq_div_size' num_seqs = 20 seq_len = 5000 seq_div_size = 200 io_dim = 256 hidden_dims = [1024, 1024, 1024] activation_function = Tanh() i2h_all = True # input to all hidden layers or only first layer h2o_all = True # all hiden layers to output or only last layer w_noise_std = 0.02 i_dropout = 0.5 l1_reg = 0 step_rule = 'adadelta' learning_rate = 0.1 momentum = 0.9 param_desc = '%s-%sIH,%sHO-n%s-d%s-l1r%s-%dx%d(%d)-%s' % ( repr(hidden_dims), 'all' if i2h_all else 'first', 'all' if h2o_all else 'last', repr(w_noise_std), repr(i_dropout), repr(l1_reg), num_seqs, seq_len, seq_div_size, step_rule ) save_freq = 5 on_irc = True # parameters for sample generation sample_len = 1000 sample_temperature = 0.7 #0.5 sample_freq = None if step_rule == 'rmsprop': step_rule = RMSProp() elif step_rule == 'adadelta': step_rule = AdaDelta() elif step_rule == 'momentum': step_rule = Momentum(learning_rate=learning_rate, momentum=momentum) else: assert(False) class Model(): def __init__(self): inp = tensor.lmatrix('bytes') in_onehot = tensor.eq(tensor.arange(io_dim, dtype='int16').reshape((1, 1, io_dim)), inp[:, :, None]) in_onehot.name = 'in_onehot' # Construct hidden states dims = [io_dim] + hidden_dims hidden = [in_onehot.dimshuffle(1, 0, 2)] bricks = [] states = [] for i in xrange(1, len(dims)): init_state = theano.shared(numpy.zeros((num_seqs, dims[i])).astype(theano.config.floatX), name='st0_%d'%i) init_cell = theano.shared(numpy.zeros((num_seqs, dims[i])).astype(theano.config.floatX), name='cell0_%d'%i) linear = Linear(input_dim=dims[i-1], output_dim=4*dims[i], name="lstm_in_%d"%i) bricks.append(linear) inter = linear.apply(hidden[-1]) if i2h_all and i > 1: linear2 = Linear(input_dim=dims[0], output_dim=4*dims[i], name="lstm_in0_%d"%i) bricks.append(linear2) inter = inter + linear2.apply(hidden[0]) inter.name = 'inter_bis_%d'%i lstm = LSTM(dim=dims[i], activation=activation_function, name="lstm_rec_%d"%i) bricks.append(lstm) new_hidden, new_cells = lstm.apply(inter, states=init_state, cells=init_cell) states.append((init_state, new_hidden[-1, :, :])) states.append((init_cell, new_cells[-1, :, :])) hidden.append(new_hidden) hidden = [s.dimshuffle(1, 0, 2) for s in hidden] # Construct output from hidden states out = None layers = zip(dims, hidden)[1:] if not h2o_all: layers = [layers[-1]] for i, (dim, state) in enumerate(layers): top_linear = Linear(input_dim=dim, output_dim=io_dim, name='top_linear_%d'%i) bricks.append(top_linear) out_i = top_linear.apply(state) out = out_i if out is None else out + out_i out.name = 'out_part_%d'%i # Do prediction and calculate cost pred = out.argmax(axis=2) cost = Softmax().categorical_cross_entropy(inp[:, 1:].flatten(), out[:, :-1, :].reshape((inp.shape[0]*(inp.shape[1]-1), io_dim))) error_rate = tensor.neq(inp[:, 1:].flatten(), pred[:, :-1].flatten()).mean() # Initialize all bricks for brick in bricks: brick.weights_init = IsotropicGaussian(0.1) brick.biases_init = Constant(0.) brick.initialize() # Apply noise and dropout cg = ComputationGraph([cost, error_rate]) if w_noise_std > 0: noise_vars = VariableFilter(roles=[WEIGHT])(cg) cg = apply_noise(cg, noise_vars, w_noise_std) if i_dropout > 0: cg = apply_dropout(cg, hidden[1:], i_dropout) [cost_reg, error_rate_reg] = cg.outputs # add l1 regularization if l1_reg > 0: l1pen = sum(abs(st).mean() for st in hidden[1:]) cost_reg = cost_reg + l1_reg * l1pen self.cost = cost self.error_rate = error_rate self.cost_reg = cost_reg self.error_rate_reg = error_rate_reg self.out = out self.pred = pred self.states = states