#!/usr/bin/env python2 import logging import sys import importlib import theano from blocks.extensions import Printing, SimpleExtension, FinishAfter from blocks.extensions.monitoring import DataStreamMonitoring, TrainingDataMonitoring from blocks.graph import ComputationGraph from blocks.main_loop import MainLoop from blocks.model import Model from blocks.algorithms import GradientDescent try: from blocks.extras.extensions.plot import Plot plot_avail = False except ImportError: plot_avail = False import datastream from paramsaveload import SaveLoadParams from gentext import GenText from ircext import IRCClientExt logging.basicConfig(level='INFO') logger = logging.getLogger(__name__) sys.setrecursionlimit(500000) class ResetStates(SimpleExtension): def __init__(self, state_vars, **kwargs): super(ResetStates, self).__init__(**kwargs) self.f = theano.function( inputs=[], outputs=[], updates=[(v, v.zeros_like()) for v in state_vars]) def do(self, which_callback, *args): self.f() if __name__ == "__main__": if len(sys.argv) < 2: print >> sys.stderr, 'Usage: %s [options] config' % sys.argv[0] sys.exit(1) model_name = sys.argv[-1] config = importlib.import_module('%s' % model_name) # Build datastream train_stream = datastream.setup_datastream('data/logcompil.txt', config.num_seqs, config.seq_len, config.seq_div_size) # Build model m = config.Model() m.pred.name = 'pred' # Train the model saveloc = 'model_data/%s-%s' % (model_name, config.param_desc) train_model(m, train_stream, dump_path=saveloc) # Define the model model = Model(m.sgd_cost) # IRC mode : just load the parameters and run an IRC server if '--irc' in sys.argv: try: extensions.append(FinishAfter(before_training=True, after_n_batches=1)) print "Initializing main loop" main_loop.run() print "Jumping into IRC" irc.run_forever() except KeyboardInterrupt: pass sys.exit(0) # Train the model cg = ComputationGraph(m.sgd_cost) algorithm = GradientDescent(cost=m.sgd_cost, step_rule=config.step_rule, parameters=cg.parameters) algorithm.add_updates(m.states) monitor_vars = [v for p in m.monitor_vars for v in p] extensions = [ TrainingDataMonitoring( monitor_vars, prefix='train', every_n_epochs=1), Printing(every_n_epochs=1, after_epoch=False), ResetStates([v for v, _ in m.states], after_epoch=True) ] if plot_avail: plot_channels = [['train_' + v.name for v in p] for p in m.monitor_vars] extensions.append( Plot(document='text_'+model_name, channels=plot_channels, server_url='http://localhost:5006', every_n_epochs=1, after_epoch=False) ) if config.save_freq is not None and dump_path is not None: extensions.append( SaveLoadParams(path=dump_path+'.pkl', model=model, before_training=True, after_training=True, after_epoch=False, every_n_epochs=config.save_freq) ) if config.sample_freq is not None: extensions.append( GenText(m, '\nalex\ttu crois ?\n', config.sample_len, config.sample_temperature, every_n_epochs=config.sample_freq, after_epoch=False, before_training=True) ) if config.on_irc: irc = IRCClientExt(m, config.sample_temperature, server='clipper.ens.fr', port=6667, nick='frigo', channels=['#frigotest', '#courssysteme'], after_batch=True) irc.do('before_training') extensions.append(irc) if config.on_irc: irc = IRCClientExt(m, config.sample_temperature, server='clipper.ens.fr', port=6667, nick='frigo', channels=['#frigotest', '#courssysteme'], after_batch=True) irc.do('before_training') extensions.append(irc) main_loop = MainLoop( model=model, data_stream=train_stream, algorithm=algorithm, extensions=extensions ) main_loop.run() # IRC mode : just load the parameters and run an IRC server if '--irc' in sys.argv: try: extensions.append(FinishAfter(before_training=True, after_n_batches=1)) print "Initializing main loop" main_loop.run() print "Jumping into IRC" irc.run_forever() except KeyboardInterrupt: pass sys.exit(0) # vim: set sts=4 ts=4 sw=4 tw=0 et :