import numpy from numpy.random import RandomState from blocks.algorithms import AdaDelta, Momentum, RMSProp, CompositeRule, BasicMomentum, Adam from blocks.bricks import Tanh, Rectifier from blocks.initialization import IsotropicGaussian, Constant from model.hpc_lstm import Model dataset = 'data/logcompil-2016-03-07.txt' io_dim = 256 repr_dim = 128 embedding_matrix = (RandomState(42).binomial(1, 0.1, ((io_dim, repr_dim))) -RandomState(123).binomial(1, 0.1, ((io_dim, repr_dim)))) # An epoch will be composed of 'num_seqs' sequences of len 'seq_len' # divided in chunks of lengh 'seq_div_size' num_seqs = 20 seq_len = 5000 seq_div_size = 50 hidden_dims = [128, 192, 256, 512] cost_factors = [1., 1., 1., 1.] hidden_q = [0.5, 0.5, 0.5, 0.5] activation_function = Tanh() out_hidden = [512] out_hidden_act = [Rectifier] weight_noise = 0.05 step_rule = Adam() #step_rule = CompositeRule([RMSProp(learning_rate=0.01), # BasicMomentum(momentum=0.9)]) #step_rule = Momentum(learning_rate=.1, momentum=0.9) weights_init = IsotropicGaussian(0.1) biases_init = Constant(0.01) # parameter saving freq (number of batches) monitor_freq = 500 save_freq = monitor_freq # used for sample generation and IRC mode sample_temperature = 0.5 #0.7 # do we want to generate samples at times during training? sample_len = 1000 sample_freq = monitor_freq sample_init = '\nalex\ttu crois?\n'