from blocks.algorithms import AdaDelta from blocks.bricks import Tanh from blocks.initialization import IsotropicGaussian, Constant from model.condlstm import Model dataset = 'data/logcompil.txt' io_dim = 256 # An epoch will be composed of 'num_seqs' sequences of len 'seq_len' # divided in chunks of lengh 'seq_div_size' num_seqs = 50 seq_len = 5000 seq_div_size = 200 layers = [ # Slowlier {'dim': 128, 'reset_after': ' \t\n,.:;/!?()[]{}<>\\\'"*+-^_|#~&`@$%', }, {'dim': 128, 'run_on': ' \t\n,.:;/!?()[]{}<>\\\'"*+-^_|#~&`@$%', 'reset_after': ' \t\n', }, {'dim': 128, 'run_on': ' \t\n', 'reset_after': '\t\n', }, {'dim': 256, 'run_on': ' \t\n', 'reset_after': '\n', }, {'dim': 512, 'run_on': '\t\n', }, # Slowest {'dim': 512, 'run_on': '\n', }, # Fastlier {'dim': 512, 'run_on': '\t\n', }, {'dim': 256, 'run_on': ' \t\n', 'reset_before':'\n', }, {'dim': 128, 'run_on': ' \t\n', 'reset_before': '\t\n', }, {'dim': 128, 'run_on': ' \t\n,.:;/!?()[]{}<>\\\'"*+-^_|#~&`@$%', 'reset_before': ' \t\n', }, {'dim': 128, 'reset_before': ' \t\n,.:;/!?()[]{}<>\\\'"*+-^_|#~&`@$%', }, ] activation_function = Tanh() w_noise_std = 0 i_dropout = 0 l1_reg = 0 l1_reg_weight = 0 step_rule = AdaDelta() weights_init = IsotropicGaussian(0.01) biases_init = Constant(0.) # parameter saving freq (number of batches) monitor_freq = 100 save_freq = 100 # used for sample generation and IRC mode #sample_temperature = 0.7 #0.5 sample_temperature = 0.9 #0.5 # do we want to generate samples at times during training? sample_len = 500 sample_freq = 100 sample_init = '\nalex\ttu crois?\n'