From 2f479926c16d2911d0dd878c21de082abfc5b237 Mon Sep 17 00:00:00 2001 From: Alex Auvolat Date: Tue, 8 Mar 2016 13:26:28 +0100 Subject: Revive project --- gfgru.py | 294 --------------------------------------------------------------- 1 file changed, 294 deletions(-) delete mode 100644 gfgru.py (limited to 'gfgru.py') diff --git a/gfgru.py b/gfgru.py deleted file mode 100644 index 29d4398..0000000 --- a/gfgru.py +++ /dev/null @@ -1,294 +0,0 @@ -import theano -from theano import tensor -import numpy - -from blocks.algorithms import Momentum, AdaDelta, RMSProp, Adam -from blocks.bricks import Activation, Tanh, Logistic, Softmax, Rectifier, Linear, MLP, Initializable, Identity -from blocks.bricks.base import application, lazy -from blocks.bricks.recurrent import BaseRecurrent, recurrent -from blocks.initialization import IsotropicGaussian, Constant -from blocks.utils import shared_floatx_zeros - -from blocks.filter import VariableFilter -from blocks.roles import WEIGHT, INITIAL_STATE, add_role -from blocks.graph import ComputationGraph, apply_noise, apply_dropout - -class TRectifier(Activation): - @application(inputs=['input_'], outputs=['output']) - def apply(self, input_): - return tensor.switch(input_ > 1, input_, 0) - -# An epoch will be composed of 'num_seqs' sequences of len 'seq_len' -# divided in chunks of lengh 'seq_div_size' -num_seqs = 10 -seq_len = 2000 -seq_div_size = 100 - -io_dim = 256 - -recurrent_blocks = [ -# (256, Tanh(), [2048], [Rectifier()]), -# (512, Rectifier(), [1024], [Rectifier()]), - (512, Tanh(), [1024], [Rectifier()]), - (512, Tanh(), [1024], [Rectifier()]), -# (2, Tanh(), [2], [Rectifier()]), -# (2, Tanh(), [], []), - ] - -control_hidden = [1024] -control_hidden_activations = [Rectifier()] - -output_hidden = [1024] -output_hidden_activations = [Rectifier()] - -weight_noise_std = 0.05 - -recurrent_h_dropout = 0 -control_h_dropout = 0 -output_h_dropout = 0.5 - -step_rule = 'adam' -learning_rate = 0.1 -momentum = 0.99 - - -param_desc = '%s,c%s,o%s-n%s-d%s,%s,%s-%s' % ( - repr(map(lambda (a, b, c, d): (a, c), recurrent_blocks)), - repr(control_hidden), repr(output_hidden), - repr(weight_noise_std), - repr(recurrent_h_dropout), repr(control_h_dropout), repr(output_h_dropout), - step_rule - ) - -save_freq = 5 -on_irc = False - -# parameters for sample generation -sample_len = 100 -sample_temperature = 0.7 #0.5 -sample_freq = 1 - -if step_rule == 'rmsprop': - step_rule = RMSProp() -elif step_rule == 'adadelta': - step_rule = AdaDelta() -elif step_rule == 'momentum': - step_rule = Momentum(learning_rate=learning_rate, momentum=momentum) -elif step_rule == 'adam': - step_rule = Adam() -else: - assert(False) - - - - -class GFGRU(BaseRecurrent, Initializable): - def __init__(self, input_dim, recurrent_blocks, control_hidden, control_hidden_activations, **kwargs): - super(GFGRU, self).__init__(**kwargs) - - self.input_dim = input_dim - self.recurrent_blocks = recurrent_blocks - self.control_hidden = control_hidden - self.control_hidden_activations = control_hidden_activations - - # setup children - self.children = control_hidden_activations - for (_, a, _, b) in recurrent_blocks: - self.children.append(a) - for c in b: - self.children.append(c) - - logistic = Logistic() - self.children.append(logistic) - - self.hidden_total_dim = sum(x for (x, _, _, _) in self.recurrent_blocks) - - # control block - self.cblocklen = len(self.recurrent_blocks) + 2 - - control_idim = self.hidden_total_dim + self.input_dim - control_odim = len(self.recurrent_blocks) * self.cblocklen - self.control = MLP(dims=[control_idim] + self.control_hidden + [control_odim], - activations=self.control_hidden_activations + [logistic], - name='control') - - self.children.append(self.control) - - # recurrent blocks - self.blocks = [] - self.params = [] - for i, (dim, act, hdim, hact) in enumerate(self.recurrent_blocks): - idim = self.input_dim + self.hidden_total_dim - if i > 0: - idim = idim + self.recurrent_blocks[i-1][0] - - idims = [idim] + hdim - if hdim == []: - inter = Identity() - else: - inter = MLP(dims=idims, activations=hact, name='inter%d'%i) - - rgate = MLP(dims=[idims[-1], dim], activations=[logistic], name='rgate%d'%i) - nstate = MLP(dims=[idims[-1], dim], activations=[act], name='nstate%d'%i) - - for brick in [inter, rgate, nstate]: - self.children.append(brick) - self.blocks.append((inter, rgate, nstate)) - - # init state zeros - self.init_states_names = [] - self.init_states_dict = {} - self.params = [] - - for i, (dim, _, _, _) in enumerate(self.recurrent_blocks): - name = 'init_state_%d'%i - svar = shared_floatx_zeros((dim,), name=name) - add_role(svar, INITIAL_STATE) - - self.init_states_names.append(name) - self.init_states_dict[name] = svar - self.params.append(svar) - - def get_dim(self, name): - if name in self.init_states_dict: - return self.init_states_dict[name].shape.eval() - return super(GFGRU, self).get_dim(name) - - def recurrent_h_dropout_vars(self, cg): - ret = [] - for (inter, rgate, nstate) in self.blocks: - ret = ret + VariableFilter(name='input_', - bricks=inter.linear_transformations + rgate.linear_transformations + nstate.linear_transformations - )(cg) - return ret - - def control_h_dropout_vars(self, cg): - return VariableFilter(name='input_', bricks=self.control.linear_transformations)(cg) - - @recurrent(sequences=['inputs'], contexts=[]) - def apply(self, inputs=None, **kwargs): - states = [kwargs[i] for i in self.init_states_names] - concat_states = tensor.concatenate(states, axis=1) - - concat_input_states = tensor.concatenate([inputs, concat_states], axis=1) - - control_v = self.control.apply(concat_input_states) - - new_states = [] - for i, (inter, rgate, nstate) in enumerate(self.blocks): - controls = control_v[:, i * self.cblocklen:(i+1) * self.cblocklen] - r_inputs = tensor.concatenate([s * controls[:, j][:, None] for j, s in enumerate(states)], axis=1) - - more_inputs = [inputs] - if i > 0: - more_inputs.append(new_states[-1]) - inter_inputs = tensor.concatenate([r_inputs] + more_inputs, axis=1) - - inter_v = inter.apply(inter_inputs) - - rgate_v = rgate.apply(inter_v) - nstate_v = nstate.apply(inter_v) - - rctl = controls[:, -1][:, None] * rgate_v - uctl = controls[:, -2][:, None] - nstate_v = uctl * nstate_v + (1 - rctl) * states[i] - - new_states.append(nstate_v) - - return new_states - - @apply.property('states') - def apply_states(self): - return self.init_states_names - - @apply.property('outputs') - def apply_outputs(self): - return self.init_states_names - - @application - def initial_state(self, state_name, batch_size, *args, **kwargs): - return tensor.repeat(self.init_states_dict[state_name][None, :], - repeats=batch_size, - axis=0) - - - -class Model(): - def __init__(self): - inp = tensor.lmatrix('bytes') - - in_onehot = tensor.eq(tensor.arange(io_dim, dtype='int16').reshape((1, 1, io_dim)), - inp[:, :, None]) - in_onehot.name = 'in_onehot' - - gfgru = GFGRU(input_dim=io_dim, - recurrent_blocks=recurrent_blocks, - control_hidden=control_hidden, - control_hidden_activations=control_hidden_activations) - - hidden_total_dim = sum(x for (x, _, _, _) in recurrent_blocks) - - prev_states_dict = {} - for i, (dim, _, _, _) in enumerate(recurrent_blocks): - prev_state = theano.shared(numpy.zeros((num_seqs, dim)).astype(theano.config.floatX), - name='states_save') - prev_states_dict['init_state_%d'%i] = prev_state - - states = [x.dimshuffle(1, 0, 2) for x in gfgru.apply(in_onehot.dimshuffle(1, 0, 2), **prev_states_dict)] - - self.states = [] - for i, _ in enumerate(recurrent_blocks): - self.states.append((prev_states_dict['init_state_%d'%i], states[i][:, -1, :])) - - states_concat = tensor.concatenate(states, axis=2) - - out_mlp = MLP(dims=[hidden_total_dim] + output_hidden + [io_dim], - activations=output_hidden_activations + [None], - name='output_mlp') - states_sh = states_concat.reshape((inp.shape[0]*inp.shape[1], hidden_total_dim)) - out = out_mlp.apply(states_sh).reshape((inp.shape[0], inp.shape[1], io_dim)) - - - - # Do prediction and calculate cost - pred = out.argmax(axis=2) - - cost = Softmax().categorical_cross_entropy(inp[:, 1:].flatten(), - out[:, :-1, :].reshape((inp.shape[0]*(inp.shape[1]-1), - io_dim))) - error_rate = tensor.neq(inp[:, 1:].flatten(), pred[:, :-1].flatten()).mean() - - # Initialize all bricks - for brick in [gfgru, out_mlp]: - brick.weights_init = IsotropicGaussian(0.01) - brick.biases_init = Constant(0.001) - brick.initialize() - - # Apply noise and dropout - cg = ComputationGraph([cost, error_rate]) - if weight_noise_std > 0: - noise_vars = VariableFilter(roles=[WEIGHT])(cg) - cg = apply_noise(cg, noise_vars, weight_noise_std) - if recurrent_h_dropout > 0: - dv = gfgru.recurrent_h_dropout_vars(cg) - print "Recurrent H dropout on", len(dv), "vars" - cg = apply_dropout(cg, dv, recurrent_h_dropout) - if control_h_dropout > 0: - dv = gfgru.control_h_dropout_vars(cg) - print "Control H dropout on", len(dv), "vars" - cg = apply_dropout(cg, dv, control_h_dropout) - if output_h_dropout > 0: - dv = VariableFilter(name='input_', bricks=out_mlp.linear_transformations)(cg) - print "Output H dropout on", len(dv), "vars" - cg = apply_dropout(cg, dv, output_h_dropout) - [cost_reg, error_rate_reg] = cg.outputs - - - self.cost = cost - self.error_rate = error_rate - self.cost_reg = cost_reg - self.error_rate_reg = error_rate_reg - self.out = out - self.pred = pred - - -- cgit v1.2.3