From 7bf692d9ae344ccef044923f131f5ce8de85b0b4 Mon Sep 17 00:00:00 2001 From: Alex Auvolat Date: Fri, 19 Jun 2015 15:59:09 -0400 Subject: Something that does not really work --- dgsrnn.py | 41 ++++++++++++++++++----------------------- 1 file changed, 18 insertions(+), 23 deletions(-) (limited to 'dgsrnn.py') diff --git a/dgsrnn.py b/dgsrnn.py index 2965364..427a026 100644 --- a/dgsrnn.py +++ b/dgsrnn.py @@ -29,27 +29,25 @@ io_dim = 256 state_dim = 1024 activation = Tanh() transition_hidden = [1024, 1024] -transition_hidden_activations = [Tanh(), Tanh()] - -max_reset = 0.8 +transition_hidden_activations = [Rectifier(), Rectifier()] output_hidden = [] output_hidden_activations = [] weight_noise_std = 0.05 -output_h_dropout = 0.0 +output_h_dropout = 0.5 -l1_state = 0.1 -l1_reset = 1 +l1_state = 0.01 +l1_reset = 0.01 -step_rule = 'adam' -learning_rate = 0.1 +step_rule = 'momentum' +learning_rate = 0.01 momentum = 0.99 -param_desc = '%s,t%s,o%s,mr%s-n%s-d%s-L1:%s,%s-%s' % ( - repr(state_dim), repr(transition_hidden), repr(output_hidden), repr(max_reset), +param_desc = '%s,t%s,o%s-n%s-d%s-L1:%s,%s-%s' % ( + repr(state_dim), repr(transition_hidden), repr(output_hidden), repr(weight_noise_std), repr(output_h_dropout), repr(l1_state), repr(l1_reset), @@ -78,24 +76,25 @@ else: class DGSRNN(BaseRecurrent, Initializable): - def __init__(self, input_dim, state_dim, act, transition_h, tr_h_activations, max_reset, **kwargs): + def __init__(self, input_dim, state_dim, act, transition_h, tr_h_activations, **kwargs): super(DGSRNN, self).__init__(**kwargs) self.input_dim = input_dim self.state_dim = state_dim - self.max_reset = max_reset + + logistic = Logistic() self.inter = MLP(dims=[input_dim + state_dim] + transition_h, activations=tr_h_activations, name='inter') self.reset = MLP(dims=[transition_h[-1], state_dim], - activations=[Logistic()], + activations=[logistic], name='reset') self.update = MLP(dims=[transition_h[-1], state_dim], activations=[act], name='update') - self.children = [self.inter, self.reset, self.update] + self.children = [self.inter, self.reset, self.update, logistic, act] + tr_h_activations # init state self.params = [shared_floatx_zeros((state_dim,), name='init_state')] @@ -109,16 +108,14 @@ class DGSRNN(BaseRecurrent, Initializable): @recurrent(sequences=['inputs'], states=['state'], outputs=['state', 'reset'], contexts=[]) def apply(self, inputs=None, state=None): - inter_v = self.inter.apply(tensor.concatenate([inputs, state], axis=1)) reset_v = self.reset.apply(inter_v) update_v = self.update.apply(inter_v) - new_state = state * (1 - max_reset * reset_v) + update_v + new_state = state * (1 - reset_v) + reset_v * update_v return new_state, reset_v - @application def initial_state(self, state_name, batch_size, *args, **kwargs): return tensor.repeat(self.params[0][None, :], @@ -126,7 +123,6 @@ class DGSRNN(BaseRecurrent, Initializable): axis=0) - class Model(): def __init__(self): inp = tensor.lmatrix('bytes') @@ -140,7 +136,6 @@ class Model(): act=activation, transition_h=transition_hidden, tr_h_activations=transition_hidden_activations, - max_reset=max_reset, name='dgsrnn') prev_state = theano.shared(numpy.zeros((num_seqs, state_dim)).astype(theano.config.floatX), @@ -169,12 +164,12 @@ class Model(): # Initialize all bricks for brick in [dgsrnn, out_mlp]: - brick.weights_init = IsotropicGaussian(0.01) - brick.biases_init = Constant(0.001) + brick.weights_init = IsotropicGaussian(0.001) + brick.biases_init = Constant(0.0) brick.initialize() # Apply noise and dropout - cg = ComputationGraph([cost, error_rate]) + cg = ComputationGraph([cost, error_rate, states, resets]) if weight_noise_std > 0: noise_vars = VariableFilter(roles=[WEIGHT])(cg) cg = apply_noise(cg, noise_vars, weight_noise_std) @@ -182,7 +177,7 @@ class Model(): dv = VariableFilter(name='input_', bricks=out_mlp.linear_transformations)(cg) print "Output H dropout on", len(dv), "vars" cg = apply_dropout(cg, dv, output_h_dropout) - [cost_reg, error_rate_reg] = cg.outputs + [cost_reg, error_rate_reg, states, resets] = cg.outputs if l1_state > 0: cost_reg = cost_reg + l1_state * abs(states).mean() -- cgit v1.2.3