From 2f479926c16d2911d0dd878c21de082abfc5b237 Mon Sep 17 00:00:00 2001 From: Alex Auvolat Date: Tue, 8 Mar 2016 13:26:28 +0100 Subject: Revive project --- dgsrnn.py | 205 -------------------------------------------------------------- 1 file changed, 205 deletions(-) delete mode 100644 dgsrnn.py (limited to 'dgsrnn.py') diff --git a/dgsrnn.py b/dgsrnn.py deleted file mode 100644 index d6d93ff..0000000 --- a/dgsrnn.py +++ /dev/null @@ -1,205 +0,0 @@ -import theano -from theano import tensor -import numpy - -from theano.tensor.shared_randomstreams import RandomStreams - -from blocks.algorithms import Momentum, AdaDelta, RMSProp, Adam -from blocks.bricks import Activation, Tanh, Logistic, Softmax, Rectifier, Linear, MLP, Initializable, Identity -from blocks.bricks.base import application, lazy -from blocks.bricks.recurrent import BaseRecurrent, recurrent -from blocks.initialization import IsotropicGaussian, Constant -from blocks.utils import shared_floatx_zeros - -from blocks.filter import VariableFilter -from blocks.roles import WEIGHT, INITIAL_STATE, add_role -from blocks.graph import ComputationGraph, apply_noise, apply_dropout - -rng = RandomStreams() - -class TRectifier(Activation): - @application(inputs=['input_'], outputs=['output']) - def apply(self, input_): - return tensor.switch(input_ > 1, input_, 0) - -# An epoch will be composed of 'num_seqs' sequences of len 'seq_len' -# divided in chunks of lengh 'seq_div_size' -num_seqs = 10 -seq_len = 1000 -seq_div_size = 5 - -io_dim = 256 - -state_dim = 1024 -activation = Tanh() -transition_hidden = [1024, 1024] -transition_hidden_activations = [Rectifier(), Rectifier()] - -output_hidden = [] -output_hidden_activations = [] - -weight_noise_std = 0.05 - -output_h_dropout = 0.0 -drop_update = 0.0 - -l1_state = 0.00 -l1_reset = 0.1 - -step_rule = 'momentum' -learning_rate = 0.001 -momentum = 0.99 - - -param_desc = '%s,t%s,o%s-n%s-d%s,%s-L1:%s,%s-%s' % ( - repr(state_dim), repr(transition_hidden), repr(output_hidden), - repr(weight_noise_std), - repr(output_h_dropout), repr(drop_update), - repr(l1_state), repr(l1_reset), - step_rule - ) - -save_freq = 5 -on_irc = False - -# parameters for sample generation -sample_len = 100 -sample_temperature = 0.7 #0.5 -sample_freq = 1 - -if step_rule == 'rmsprop': - step_rule = RMSProp() -elif step_rule == 'adadelta': - step_rule = AdaDelta() -elif step_rule == 'momentum': - step_rule = Momentum(learning_rate=learning_rate, momentum=momentum) -elif step_rule == 'adam': - step_rule = Adam() -else: - assert(False) - - - -class DGSRNN(BaseRecurrent, Initializable): - def __init__(self, input_dim, state_dim, act, transition_h, tr_h_activations, **kwargs): - super(DGSRNN, self).__init__(**kwargs) - - self.input_dim = input_dim - self.state_dim = state_dim - - logistic = Logistic() - - self.inter = MLP(dims=[input_dim + state_dim] + transition_h, - activations=tr_h_activations, - name='inter') - self.reset = MLP(dims=[transition_h[-1], state_dim], - activations=[logistic], - name='reset') - self.update = MLP(dims=[transition_h[-1], state_dim], - activations=[act], - name='update') - - self.children = [self.inter, self.reset, self.update, logistic, act] + tr_h_activations - - # init state - self.params = [shared_floatx_zeros((state_dim,), name='init_state')] - add_role(self.params[0], INITIAL_STATE) - - def get_dim(self, name): - if name == 'state': - return self.state_dim - return super(GFGRU, self).get_dim(name) - - @recurrent(sequences=['inputs', 'drop_updates_mask'], states=['state'], - outputs=['state', 'reset'], contexts=[]) - def apply(self, inputs=None, drop_updates_mask=None, state=None): - inter_v = self.inter.apply(tensor.concatenate([inputs, state], axis=1)) - reset_v = self.reset.apply(inter_v) - update_v = self.update.apply(inter_v) - - reset_v = reset_v * drop_updates_mask - - new_state = state * (1 - reset_v) + reset_v * update_v - - return new_state, reset_v - - @application - def initial_state(self, state_name, batch_size, *args, **kwargs): - return tensor.repeat(self.params[0][None, :], - repeats=batch_size, - axis=0) - - -class Model(): - def __init__(self): - inp = tensor.lmatrix('bytes') - - in_onehot = tensor.eq(tensor.arange(io_dim, dtype='int16').reshape((1, 1, io_dim)), - inp[:, :, None]) - in_onehot.name = 'in_onehot' - - dgsrnn = DGSRNN(input_dim=io_dim, - state_dim=state_dim, - act=activation, - transition_h=transition_hidden, - tr_h_activations=transition_hidden_activations, - name='dgsrnn') - - prev_state = theano.shared(numpy.zeros((num_seqs, state_dim)).astype(theano.config.floatX), - name='state') - - states, resets = dgsrnn.apply(inputs=in_onehot.dimshuffle(1, 0, 2), - drop_updates_mask=rng.binomial(size=(inp.shape[1], inp.shape[0], state_dim), - p=1-drop_update, - dtype=theano.config.floatX), - state=prev_state) - states = states.dimshuffle(1, 0, 2) - resets = resets.dimshuffle(1, 0, 2) - - self.states = [(prev_state, states[:, -1, :])] - - out_mlp = MLP(dims=[state_dim] + output_hidden + [io_dim], - activations=output_hidden_activations + [None], - name='output_mlp') - states_sh = states.reshape((inp.shape[0]*inp.shape[1], state_dim)) - out = out_mlp.apply(states_sh).reshape((inp.shape[0], inp.shape[1], io_dim)) - - - # Do prediction and calculate cost - pred = out.argmax(axis=2) - - cost = Softmax().categorical_cross_entropy(inp[:, 1:].flatten(), - out[:, :-1, :].reshape((inp.shape[0]*(inp.shape[1]-1), - io_dim))) - error_rate = tensor.neq(inp[:, 1:].flatten(), pred[:, :-1].flatten()).mean() - - # Initialize all bricks - for brick in [dgsrnn, out_mlp]: - brick.weights_init = IsotropicGaussian(0.001) - brick.biases_init = Constant(0.0) - brick.initialize() - - # Apply noise and dropout - cg = ComputationGraph([cost, error_rate, states, resets]) - if weight_noise_std > 0: - noise_vars = VariableFilter(roles=[WEIGHT])(cg) - cg = apply_noise(cg, noise_vars, weight_noise_std) - if output_h_dropout > 0: - dv = VariableFilter(name='input_', bricks=out_mlp.linear_transformations)(cg) - print "Output H dropout on", len(dv), "vars" - cg = apply_dropout(cg, dv, output_h_dropout) - [cost_reg, error_rate_reg, states, resets] = cg.outputs - - if l1_state > 0: - cost_reg = cost_reg + l1_state * abs(states).mean() - if l1_reset > 0: - cost_reg = cost_reg + l1_reset * abs(resets).mean() - - self.cost = cost - self.error_rate = error_rate - self.cost_reg = cost_reg - self.error_rate_reg = error_rate_reg - self.out = out - self.pred = pred - - -- cgit v1.2.3