diff options
Diffstat (limited to 'train.py')
-rwxr-xr-x | train.py | 120 |
1 files changed, 45 insertions, 75 deletions
@@ -1,58 +1,37 @@ -#!/usr/bin/env python +#!/usr/bin/env python2 import logging -import numpy import sys import importlib -from contextlib import closing +logging.basicConfig(level='INFO') +logger = logging.getLogger(__name__) import theano -from theano import tensor -from theano.tensor.shared_randomstreams import RandomStreams -from blocks.serialization import load_parameter_values, secure_dump, BRICK_DELIMITER -from blocks.extensions import Printing, SimpleExtension +from blocks.extensions import Printing, SimpleExtension, FinishAfter, ProgressBar from blocks.extensions.monitoring import DataStreamMonitoring, TrainingDataMonitoring -from blocks.extensions.saveload import Checkpoint, Load + from blocks.graph import ComputationGraph from blocks.main_loop import MainLoop from blocks.model import Model -from blocks.algorithms import GradientDescent, StepRule, CompositeRule +from blocks.algorithms import GradientDescent try: from blocks.extras.extensions.plot import Plot plot_avail = True except ImportError: plot_avail = False + logger.warning('Plotting extension not available') + import datastream from paramsaveload import SaveLoadParams from gentext import GenText -from ircext import IRCClientExt -logging.basicConfig(level='INFO') -logger = logging.getLogger(__name__) sys.setrecursionlimit(500000) -if __name__ == "__main__": - if len(sys.argv) != 2: - print >> sys.stderr, 'Usage: %s config' % sys.argv[0] - sys.exit(1) - model_name = sys.argv[1] - config = importlib.import_module('%s' % model_name) - - -class ElementwiseRemoveNotFinite(StepRule): - def __init__(self, scaler=0.1): - self.scaler = scaler - - def compute_step(self, param, previous_step): - not_finite = tensor.isnan(previous_step) + tensor.isinf(previous_step) - step = tensor.switch(not_finite, self.scaler * param, previous_step) - - return step, [] class ResetStates(SimpleExtension): def __init__(self, state_vars, **kwargs): @@ -65,84 +44,75 @@ class ResetStates(SimpleExtension): def do(self, which_callback, *args): self.f() -def train_model(m, train_stream, dump_path=None): +if __name__ == "__main__": + if len(sys.argv) < 2: + print >> sys.stderr, 'Usage: %s [options] config' % sys.argv[0] + sys.exit(1) + model_name = sys.argv[-1] + config = importlib.import_module('.%s' % model_name, 'config') + + # Build datastream + train_stream = datastream.setup_datastream(config.dataset, + config.num_seqs, + config.seq_len, + config.seq_div_size) - # Define the model - model = Model(m.sgd_cost) + # Build model + m = config.Model(config) - cg = ComputationGraph(m.sgd_cost) + # Train the model + cg = Model(m.sgd_cost) algorithm = GradientDescent(cost=m.sgd_cost, - step_rule=CompositeRule([ - ElementwiseRemoveNotFinite(), - config.step_rule]), + step_rule=config.step_rule, parameters=cg.parameters) algorithm.add_updates(m.states) - monitor_vars = [v for p in m.monitor_vars for v in p] + monitor_vars = list(set(v for p in m.monitor_vars for v in p)) extensions = [ TrainingDataMonitoring( monitor_vars, - prefix='train', every_n_epochs=1), - Printing(every_n_epochs=1, after_epoch=False), + prefix='train', every_n_batches=config.monitor_freq), + Printing(every_n_batches=config.monitor_freq, after_epoch=False), + ProgressBar(), ResetStates([v for v, _ in m.states], after_epoch=True) ] if plot_avail: plot_channels = [['train_' + v.name for v in p] for p in m.monitor_vars] extensions.append( - Plot(document='text_'+model_name+'_'+config.param_desc, + Plot(document='text_'+model_name, channels=plot_channels, - server_url='http://eos6:5006/', - every_n_epochs=1, after_epoch=False) + # server_url='http://localhost:5006', + every_n_batches=config.monitor_freq) ) - if config.save_freq is not None and dump_path is not None: + + if config.save_freq is not None and not '--nosave' in sys.argv: extensions.append( - SaveLoadParams(path=dump_path+'.pkl', - model=model, - before_training=True, + SaveLoadParams(path='params/%s.pkl'%model_name, + model=cg, + before_training=(not '--noload' in sys.argv), after_training=True, - after_epoch=False, - every_n_epochs=config.save_freq) + every_n_batches=config.save_freq) ) + if config.sample_freq is not None: extensions.append( - GenText(m, '\nalex\ttu crois ?\n', + GenText(m, config.sample_init, config.sample_len, config.sample_temperature, - every_n_epochs=config.sample_freq, - after_epoch=False, before_training=True) - ) - if config.on_irc: - extensions.append( - IRCClientExt(m, config.sample_temperature, - server='irc.ulminfo.fr', - port=6667, - nick='frigo', - channels=['#frigotest', '#courssysteme'], - after_batch=True) + before_training=True, + every_n_batches=config.sample_freq) ) main_loop = MainLoop( - model=model, + model=cg, data_stream=train_stream, algorithm=algorithm, extensions=extensions ) main_loop.run() + main_loop.profile.report() -if __name__ == "__main__": - # Build datastream - train_stream = datastream.setup_datastream('data/logcompil.txt', - config.num_seqs, - config.seq_len, - config.seq_div_size) - - # Build model - m = config.Model() - m.pred.name = 'pred' - - # Train the model - saveloc = 'model_data/%s-%s' % (model_name, config.param_desc) - train_model(m, train_stream, dump_path=saveloc) +# vim: set sts=4 ts=4 sw=4 tw=0 et : |