diff options
Diffstat (limited to 'train.py')
-rwxr-xr-x | train.py | 60 |
1 files changed, 5 insertions, 55 deletions
@@ -22,7 +22,7 @@ from blocks.model import Model from blocks.algorithms import GradientDescent import datastream -# from apply_model import Apply +import gentext logging.basicConfig(level='INFO') logger = logging.getLogger(__name__) @@ -36,57 +36,6 @@ if __name__ == "__main__": model_name = sys.argv[1] config = importlib.import_module('%s' % model_name) - -class GenText(SimpleExtension): - def __init__(self, model, init_text, max_bytes, **kwargs): - super(GenText, self).__init__(**kwargs) - - self.init_text = init_text - self.max_bytes = max_bytes - - out = model.out[:, -1, :] / numpy.float32(config.sample_temperature) - prob = tensor.nnet.softmax(out) - - cg = ComputationGraph([prob]) - assert(len(cg.inputs) == 1) - assert(cg.inputs[0].name == 'bytes') - - state_vars = [theano.shared(v[0:1, :].zeros_like().eval(), v.name+'-gen') - for v, _ in model.states] - givens = [(v, x) for (v, _), x in zip(model.states, state_vars)] - updates= [(x, upd) for x, (_, upd) in zip(state_vars, model.states)] - - self.f = theano.function(inputs=cg.inputs, outputs=[prob], - givens=givens, updates=updates) - self.reset_states = theano.function(inputs=[], outputs=[], - updates=[(v, v.zeros_like()) for v in state_vars]) - - def do(self, which_callback, *args): - - print "Sample:" - print "-------" - - self.reset_states() - - v = numpy.array([ord(i) for i in self.init_text], - dtype='int16')[None, :] - prob, = self.f(v) - - sys.stdout.write(self.init_text) - while v.shape[1] < self.max_bytes: - prob = prob / 1.00001 - pred = numpy.random.multinomial(1, prob[0, :]).nonzero()[0][0] - - v = numpy.concatenate([v, pred[None, None]], axis=1) - sys.stdout.write(chr(int(pred))) - sys.stdout.flush() - - prob, = self.f(pred[None, None]) - print - print "-------" - print - - class ResetStates(SimpleExtension): def __init__(self, state_vars, **kwargs): super(ResetStates, self).__init__(**kwargs) @@ -142,9 +91,10 @@ def train_model(m, train_stream, dump_path=None): server_url='http://eos21:4201/', every_n_epochs=1, after_epoch=False), - GenText(m, '\nalex\ttu crois ?\n', config.sample_len, - every_n_epochs=config.sample_freq, - after_epoch=False, before_training=True), + gentext.GenText(m, '\nalex\ttu crois ?\n', + config.sample_len, config.sample_temperature, + every_n_epochs=config.sample_freq, + after_epoch=False, before_training=True), ResetStates([v for v, _ in m.states], after_epoch=True) ] ) |