summaryrefslogtreecommitdiff
path: root/model
diff options
context:
space:
mode:
Diffstat (limited to 'model')
-rw-r--r--model/lstm.py25
1 files changed, 18 insertions, 7 deletions
diff --git a/model/lstm.py b/model/lstm.py
index abd44e0..4d715d5 100644
--- a/model/lstm.py
+++ b/model/lstm.py
@@ -15,8 +15,8 @@ class Model():
def __init__(self, config):
inp = tensor.imatrix('bytes')
- in_onehot = tensor.eq(tensor.arange(config.io_dim, dtype='int16').reshape((1, 1, config.io_dim)),
- inp[:, :, None])
+ in_onehot = tensor.eq(tensor.arange(config.io_dim, dtype='int32').reshape((1, 1, config.io_dim)),
+ inp[:, :, None]).astype(theano.config.floatX)
in_onehot.name = 'in_onehot'
# Construct hidden states
@@ -54,6 +54,9 @@ class Model():
hidden.append(new_hidden)
+ for i, (u, v) in enumerate(states):
+ print "**** state", i, u.dtype, v.dtype
+
hidden = [s.dimshuffle(1, 0, 2) for s in hidden]
# Construct output from hidden states
@@ -66,16 +69,22 @@ class Model():
name='top_linear_%d'%i)
bricks.append(top_linear)
out_i = top_linear.apply(state)
+ print "**** out", i, out_i.dtype
out = out_i if out is None else out + out_i
out.name = 'out_part_%d'%i
# Do prediction and calculate cost
- pred = out.argmax(axis=2)
+ pred = out.argmax(axis=2).astype('int32')
+ print "**** inp", inp.dtype
+ print "**** out", out.dtype
+ print "**** pred", pred.dtype
cost = Softmax().categorical_cross_entropy(inp[:, 1:].flatten(),
out[:, :-1, :].reshape((inp.shape[0]*(inp.shape[1]-1),
config.io_dim))).mean()
- error_rate = tensor.neq(inp[:, 1:].flatten(), pred[:, :-1].flatten()).mean()
+ error_rate = tensor.neq(inp[:, 1:].flatten(), pred[:, :-1].flatten()).astype(theano.config.floatX).mean()
+ print "**** cost", cost.dtype
+ print "**** error_rate", error_rate.dtype
# Initialize all bricks
for brick in bricks:
@@ -91,13 +100,15 @@ class Model():
if config.i_dropout > 0:
cg = apply_dropout(cg, hidden[1:], config.i_dropout)
[cost_reg, error_rate_reg] = cg.outputs
+ print "**** cost_reg", cost_reg.dtype
+ print "**** error_rate_reg", error_rate_reg.dtype
# add l1 regularization
if config.l1_reg > 0:
l1pen = sum(abs(st).mean() for st in hidden[1:])
cost_reg = cost_reg + config.l1_reg * l1pen
- cost_reg += 1e-10 # so that it is not the same Theano variable
+ cost_reg += 1e-10 # so that it is not the same Theano variable as cost
error_rate_reg += 1e-10
# put stuff into self that is usefull for training or extensions
@@ -107,8 +118,8 @@ class Model():
cost_reg.name = 'cost_reg'
error_rate.name = 'error_rate'
error_rate_reg.name = 'error_rate_reg'
- self.monitor_vars = [[cost, cost_reg],
- [error_rate, error_rate_reg]]
+ self.monitor_vars = [[cost_reg],
+ [error_rate_reg]]
self.out = out
self.pred = pred