summaryrefslogtreecommitdiff
path: root/model/gfgru.py
diff options
context:
space:
mode:
Diffstat (limited to 'model/gfgru.py')
-rw-r--r--model/gfgru.py294
1 files changed, 294 insertions, 0 deletions
diff --git a/model/gfgru.py b/model/gfgru.py
new file mode 100644
index 0000000..29d4398
--- /dev/null
+++ b/model/gfgru.py
@@ -0,0 +1,294 @@
+import theano
+from theano import tensor
+import numpy
+
+from blocks.algorithms import Momentum, AdaDelta, RMSProp, Adam
+from blocks.bricks import Activation, Tanh, Logistic, Softmax, Rectifier, Linear, MLP, Initializable, Identity
+from blocks.bricks.base import application, lazy
+from blocks.bricks.recurrent import BaseRecurrent, recurrent
+from blocks.initialization import IsotropicGaussian, Constant
+from blocks.utils import shared_floatx_zeros
+
+from blocks.filter import VariableFilter
+from blocks.roles import WEIGHT, INITIAL_STATE, add_role
+from blocks.graph import ComputationGraph, apply_noise, apply_dropout
+
+class TRectifier(Activation):
+ @application(inputs=['input_'], outputs=['output'])
+ def apply(self, input_):
+ return tensor.switch(input_ > 1, input_, 0)
+
+# An epoch will be composed of 'num_seqs' sequences of len 'seq_len'
+# divided in chunks of lengh 'seq_div_size'
+num_seqs = 10
+seq_len = 2000
+seq_div_size = 100
+
+io_dim = 256
+
+recurrent_blocks = [
+# (256, Tanh(), [2048], [Rectifier()]),
+# (512, Rectifier(), [1024], [Rectifier()]),
+ (512, Tanh(), [1024], [Rectifier()]),
+ (512, Tanh(), [1024], [Rectifier()]),
+# (2, Tanh(), [2], [Rectifier()]),
+# (2, Tanh(), [], []),
+ ]
+
+control_hidden = [1024]
+control_hidden_activations = [Rectifier()]
+
+output_hidden = [1024]
+output_hidden_activations = [Rectifier()]
+
+weight_noise_std = 0.05
+
+recurrent_h_dropout = 0
+control_h_dropout = 0
+output_h_dropout = 0.5
+
+step_rule = 'adam'
+learning_rate = 0.1
+momentum = 0.99
+
+
+param_desc = '%s,c%s,o%s-n%s-d%s,%s,%s-%s' % (
+ repr(map(lambda (a, b, c, d): (a, c), recurrent_blocks)),
+ repr(control_hidden), repr(output_hidden),
+ repr(weight_noise_std),
+ repr(recurrent_h_dropout), repr(control_h_dropout), repr(output_h_dropout),
+ step_rule
+ )
+
+save_freq = 5
+on_irc = False
+
+# parameters for sample generation
+sample_len = 100
+sample_temperature = 0.7 #0.5
+sample_freq = 1
+
+if step_rule == 'rmsprop':
+ step_rule = RMSProp()
+elif step_rule == 'adadelta':
+ step_rule = AdaDelta()
+elif step_rule == 'momentum':
+ step_rule = Momentum(learning_rate=learning_rate, momentum=momentum)
+elif step_rule == 'adam':
+ step_rule = Adam()
+else:
+ assert(False)
+
+
+
+
+class GFGRU(BaseRecurrent, Initializable):
+ def __init__(self, input_dim, recurrent_blocks, control_hidden, control_hidden_activations, **kwargs):
+ super(GFGRU, self).__init__(**kwargs)
+
+ self.input_dim = input_dim
+ self.recurrent_blocks = recurrent_blocks
+ self.control_hidden = control_hidden
+ self.control_hidden_activations = control_hidden_activations
+
+ # setup children
+ self.children = control_hidden_activations
+ for (_, a, _, b) in recurrent_blocks:
+ self.children.append(a)
+ for c in b:
+ self.children.append(c)
+
+ logistic = Logistic()
+ self.children.append(logistic)
+
+ self.hidden_total_dim = sum(x for (x, _, _, _) in self.recurrent_blocks)
+
+ # control block
+ self.cblocklen = len(self.recurrent_blocks) + 2
+
+ control_idim = self.hidden_total_dim + self.input_dim
+ control_odim = len(self.recurrent_blocks) * self.cblocklen
+ self.control = MLP(dims=[control_idim] + self.control_hidden + [control_odim],
+ activations=self.control_hidden_activations + [logistic],
+ name='control')
+
+ self.children.append(self.control)
+
+ # recurrent blocks
+ self.blocks = []
+ self.params = []
+ for i, (dim, act, hdim, hact) in enumerate(self.recurrent_blocks):
+ idim = self.input_dim + self.hidden_total_dim
+ if i > 0:
+ idim = idim + self.recurrent_blocks[i-1][0]
+
+ idims = [idim] + hdim
+ if hdim == []:
+ inter = Identity()
+ else:
+ inter = MLP(dims=idims, activations=hact, name='inter%d'%i)
+
+ rgate = MLP(dims=[idims[-1], dim], activations=[logistic], name='rgate%d'%i)
+ nstate = MLP(dims=[idims[-1], dim], activations=[act], name='nstate%d'%i)
+
+ for brick in [inter, rgate, nstate]:
+ self.children.append(brick)
+ self.blocks.append((inter, rgate, nstate))
+
+ # init state zeros
+ self.init_states_names = []
+ self.init_states_dict = {}
+ self.params = []
+
+ for i, (dim, _, _, _) in enumerate(self.recurrent_blocks):
+ name = 'init_state_%d'%i
+ svar = shared_floatx_zeros((dim,), name=name)
+ add_role(svar, INITIAL_STATE)
+
+ self.init_states_names.append(name)
+ self.init_states_dict[name] = svar
+ self.params.append(svar)
+
+ def get_dim(self, name):
+ if name in self.init_states_dict:
+ return self.init_states_dict[name].shape.eval()
+ return super(GFGRU, self).get_dim(name)
+
+ def recurrent_h_dropout_vars(self, cg):
+ ret = []
+ for (inter, rgate, nstate) in self.blocks:
+ ret = ret + VariableFilter(name='input_',
+ bricks=inter.linear_transformations + rgate.linear_transformations + nstate.linear_transformations
+ )(cg)
+ return ret
+
+ def control_h_dropout_vars(self, cg):
+ return VariableFilter(name='input_', bricks=self.control.linear_transformations)(cg)
+
+ @recurrent(sequences=['inputs'], contexts=[])
+ def apply(self, inputs=None, **kwargs):
+ states = [kwargs[i] for i in self.init_states_names]
+ concat_states = tensor.concatenate(states, axis=1)
+
+ concat_input_states = tensor.concatenate([inputs, concat_states], axis=1)
+
+ control_v = self.control.apply(concat_input_states)
+
+ new_states = []
+ for i, (inter, rgate, nstate) in enumerate(self.blocks):
+ controls = control_v[:, i * self.cblocklen:(i+1) * self.cblocklen]
+ r_inputs = tensor.concatenate([s * controls[:, j][:, None] for j, s in enumerate(states)], axis=1)
+
+ more_inputs = [inputs]
+ if i > 0:
+ more_inputs.append(new_states[-1])
+ inter_inputs = tensor.concatenate([r_inputs] + more_inputs, axis=1)
+
+ inter_v = inter.apply(inter_inputs)
+
+ rgate_v = rgate.apply(inter_v)
+ nstate_v = nstate.apply(inter_v)
+
+ rctl = controls[:, -1][:, None] * rgate_v
+ uctl = controls[:, -2][:, None]
+ nstate_v = uctl * nstate_v + (1 - rctl) * states[i]
+
+ new_states.append(nstate_v)
+
+ return new_states
+
+ @apply.property('states')
+ def apply_states(self):
+ return self.init_states_names
+
+ @apply.property('outputs')
+ def apply_outputs(self):
+ return self.init_states_names
+
+ @application
+ def initial_state(self, state_name, batch_size, *args, **kwargs):
+ return tensor.repeat(self.init_states_dict[state_name][None, :],
+ repeats=batch_size,
+ axis=0)
+
+
+
+class Model():
+ def __init__(self):
+ inp = tensor.lmatrix('bytes')
+
+ in_onehot = tensor.eq(tensor.arange(io_dim, dtype='int16').reshape((1, 1, io_dim)),
+ inp[:, :, None])
+ in_onehot.name = 'in_onehot'
+
+ gfgru = GFGRU(input_dim=io_dim,
+ recurrent_blocks=recurrent_blocks,
+ control_hidden=control_hidden,
+ control_hidden_activations=control_hidden_activations)
+
+ hidden_total_dim = sum(x for (x, _, _, _) in recurrent_blocks)
+
+ prev_states_dict = {}
+ for i, (dim, _, _, _) in enumerate(recurrent_blocks):
+ prev_state = theano.shared(numpy.zeros((num_seqs, dim)).astype(theano.config.floatX),
+ name='states_save')
+ prev_states_dict['init_state_%d'%i] = prev_state
+
+ states = [x.dimshuffle(1, 0, 2) for x in gfgru.apply(in_onehot.dimshuffle(1, 0, 2), **prev_states_dict)]
+
+ self.states = []
+ for i, _ in enumerate(recurrent_blocks):
+ self.states.append((prev_states_dict['init_state_%d'%i], states[i][:, -1, :]))
+
+ states_concat = tensor.concatenate(states, axis=2)
+
+ out_mlp = MLP(dims=[hidden_total_dim] + output_hidden + [io_dim],
+ activations=output_hidden_activations + [None],
+ name='output_mlp')
+ states_sh = states_concat.reshape((inp.shape[0]*inp.shape[1], hidden_total_dim))
+ out = out_mlp.apply(states_sh).reshape((inp.shape[0], inp.shape[1], io_dim))
+
+
+
+ # Do prediction and calculate cost
+ pred = out.argmax(axis=2)
+
+ cost = Softmax().categorical_cross_entropy(inp[:, 1:].flatten(),
+ out[:, :-1, :].reshape((inp.shape[0]*(inp.shape[1]-1),
+ io_dim)))
+ error_rate = tensor.neq(inp[:, 1:].flatten(), pred[:, :-1].flatten()).mean()
+
+ # Initialize all bricks
+ for brick in [gfgru, out_mlp]:
+ brick.weights_init = IsotropicGaussian(0.01)
+ brick.biases_init = Constant(0.001)
+ brick.initialize()
+
+ # Apply noise and dropout
+ cg = ComputationGraph([cost, error_rate])
+ if weight_noise_std > 0:
+ noise_vars = VariableFilter(roles=[WEIGHT])(cg)
+ cg = apply_noise(cg, noise_vars, weight_noise_std)
+ if recurrent_h_dropout > 0:
+ dv = gfgru.recurrent_h_dropout_vars(cg)
+ print "Recurrent H dropout on", len(dv), "vars"
+ cg = apply_dropout(cg, dv, recurrent_h_dropout)
+ if control_h_dropout > 0:
+ dv = gfgru.control_h_dropout_vars(cg)
+ print "Control H dropout on", len(dv), "vars"
+ cg = apply_dropout(cg, dv, control_h_dropout)
+ if output_h_dropout > 0:
+ dv = VariableFilter(name='input_', bricks=out_mlp.linear_transformations)(cg)
+ print "Output H dropout on", len(dv), "vars"
+ cg = apply_dropout(cg, dv, output_h_dropout)
+ [cost_reg, error_rate_reg] = cg.outputs
+
+
+ self.cost = cost
+ self.error_rate = error_rate
+ self.cost_reg = cost_reg
+ self.error_rate_reg = error_rate_reg
+ self.out = out
+ self.pred = pred
+
+