diff options
-rw-r--r-- | .gitignore | 2 | ||||
-rw-r--r-- | config/__init__.py | 0 | ||||
-rw-r--r-- | config/hpc-lstm-1.py | 37 | ||||
-rw-r--r-- | config/lstm-frigo-irc.py | 39 | ||||
-rw-r--r-- | datastream.py | 1 | ||||
-rw-r--r-- | gentext.py | 2 | ||||
-rw-r--r-- | irc.py | 173 | ||||
-rw-r--r-- | ircext.py | 4 | ||||
-rw-r--r-- | model/__init__.py | 0 | ||||
-rw-r--r-- | model/cchlstm.py (renamed from cchlstm.py) | 0 | ||||
-rw-r--r-- | model/dgsrnn.py (renamed from dgsrnn.py) | 0 | ||||
-rw-r--r-- | model/gfgru.py (renamed from gfgru.py) | 0 | ||||
-rw-r--r-- | model/hpc_lstm.py | 115 | ||||
-rw-r--r-- | model/lstm.py (renamed from lstm.py) | 107 | ||||
-rwxr-xr-x | train.py | 120 |
15 files changed, 449 insertions, 151 deletions
@@ -1,4 +1,4 @@ *.pyc *.swp data/* -model_data/* +params/* diff --git a/config/__init__.py b/config/__init__.py new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/config/__init__.py diff --git a/config/hpc-lstm-1.py b/config/hpc-lstm-1.py new file mode 100644 index 0000000..e4009d5 --- /dev/null +++ b/config/hpc-lstm-1.py @@ -0,0 +1,37 @@ +from blocks.algorithms import AdaDelta, Momentum +from blocks.bricks import Tanh, Rectifier + +from model.hpc_lstm import Model + +dataset = 'data/logcompil-2016-03-07.txt' +io_dim = 256 + +# An epoch will be composed of 'num_seqs' sequences of len 'seq_len' +# divided in chunks of lengh 'seq_div_size' +num_seqs = 100 +seq_len = 2000 +seq_div_size = 100 + +hidden_dims = [128, 128, 256, 512] +cost_factors = [1., 1., 1., 1.] +hidden_q = [0.02, 0.02, 0.05, 0.05] +activation_function = Tanh() + +out_hidden = [512] +out_hidden_act = [Rectifier] + +step_rule = AdaDelta() +#step_rule = Momentum(learning_rate=0.0001, momentum=0.99) + +# parameter saving freq (number of batches) +monitor_freq = 10 +save_freq = 100 + +# used for sample generation and IRC mode +sample_temperature = 0.7 #0.5 + +# do we want to generate samples at times during training? +sample_len = 1000 +sample_freq = 100 +sample_init = '\nalex\ttu crois?\n' + diff --git a/config/lstm-frigo-irc.py b/config/lstm-frigo-irc.py new file mode 100644 index 0000000..2d0bf3a --- /dev/null +++ b/config/lstm-frigo-irc.py @@ -0,0 +1,39 @@ +from blocks.algorithms import AdaDelta +from blocks.bricks import Tanh + +from model.lstm import Model + +dataset = 'data/logcompil-2016-03-07.txt' +io_dim = 256 + +# An epoch will be composed of 'num_seqs' sequences of len 'seq_len' +# divided in chunks of lengh 'seq_div_size' +num_seqs = 100 +seq_len = 2000 +seq_div_size = 100 + +hidden_dims = [1024, 1024, 1024] +activation_function = Tanh() + +i2h_all = True # input to all hidden layers or only first layer +h2o_all = True # all hiden layers to output or only last layer + +w_noise_std = 0.02 +i_dropout = 0.5 + +l1_reg = 0 + +step_rule = AdaDelta() + +# parameter saving freq (number of batches) +monitor_freq = 10 +save_freq = 100 + +# used for sample generation and IRC mode +sample_temperature = 0.7 #0.5 + +# do we want to generate samples at times during training? +sample_len = 1000 +sample_freq = 100 +sample_init = '\nalex\ttu crois?\n' + diff --git a/datastream.py b/datastream.py index 8025945..b7aae25 100644 --- a/datastream.py +++ b/datastream.py @@ -38,6 +38,7 @@ class BinaryFileDataset(Dataset): return os.fstat(self.f.fileno()).st_size class RandomBlockIterator(IterationScheme): + requests_examples=True def __init__(self, item_range, seq_len, num_seqs_per_epoch, **kwargs): self.seq_len = seq_len self.num_seqs = num_seqs_per_epoch @@ -46,7 +46,7 @@ class GenText(SimpleExtension): sys.stdout.write(self.init_text) while v.shape[1] < self.max_bytes: prob = prob / 1.00001 - pred = numpy.random.multinomial(1, prob[0, :]).nonzero()[0][0] + pred = numpy.random.multinomial(1, prob[0, :]).nonzero()[0][0].astype('int16') v = numpy.concatenate([v, pred[None, None]], axis=1) sys.stdout.write(chr(int(pred))) @@ -0,0 +1,173 @@ +#!/usr/bin/env python2 + +import logging +import sys +import importlib + +import theano + +from blocks.extensions import Printing, SimpleExtension, FinishAfter +from blocks.extensions.monitoring import DataStreamMonitoring, TrainingDataMonitoring + +from blocks.graph import ComputationGraph +from blocks.main_loop import MainLoop +from blocks.model import Model +from blocks.algorithms import GradientDescent + +try: + from blocks.extras.extensions.plot import Plot + plot_avail = False +except ImportError: + plot_avail = False + + +import datastream +from paramsaveload import SaveLoadParams +from gentext import GenText +from ircext import IRCClientExt + +logging.basicConfig(level='INFO') +logger = logging.getLogger(__name__) + +sys.setrecursionlimit(500000) + + +class ResetStates(SimpleExtension): + def __init__(self, state_vars, **kwargs): + super(ResetStates, self).__init__(**kwargs) + + self.f = theano.function( + inputs=[], outputs=[], + updates=[(v, v.zeros_like()) for v in state_vars]) + + def do(self, which_callback, *args): + self.f() + +if __name__ == "__main__": + if len(sys.argv) < 2: + print >> sys.stderr, 'Usage: %s [options] config' % sys.argv[0] + sys.exit(1) + model_name = sys.argv[-1] + config = importlib.import_module('%s' % model_name) + + + # Build datastream + train_stream = datastream.setup_datastream('data/logcompil.txt', + config.num_seqs, + config.seq_len, + config.seq_div_size) + + # Build model + m = config.Model() + m.pred.name = 'pred' + + # Train the model + saveloc = 'model_data/%s-%s' % (model_name, config.param_desc) + train_model(m, train_stream, dump_path=saveloc) + + + # Define the model + model = Model(m.sgd_cost) + + # IRC mode : just load the parameters and run an IRC server + if '--irc' in sys.argv: + try: + extensions.append(FinishAfter(before_training=True, after_n_batches=1)) + print "Initializing main loop" + main_loop.run() + print "Jumping into IRC" + irc.run_forever() + except KeyboardInterrupt: + pass + sys.exit(0) + + # Train the model + + cg = ComputationGraph(m.sgd_cost) + algorithm = GradientDescent(cost=m.sgd_cost, + step_rule=config.step_rule, + parameters=cg.parameters) + + algorithm.add_updates(m.states) + + monitor_vars = [v for p in m.monitor_vars for v in p] + extensions = [ + TrainingDataMonitoring( + monitor_vars, + prefix='train', every_n_epochs=1), + Printing(every_n_epochs=1, after_epoch=False), + + ResetStates([v for v, _ in m.states], after_epoch=True) + ] + if plot_avail: + plot_channels = [['train_' + v.name for v in p] for p in m.monitor_vars] + extensions.append( + Plot(document='text_'+model_name, + channels=plot_channels, + server_url='http://localhost:5006', + every_n_epochs=1, after_epoch=False) + ) + if config.save_freq is not None and dump_path is not None: + extensions.append( + SaveLoadParams(path=dump_path+'.pkl', + model=model, + before_training=True, + after_training=True, + after_epoch=False, + every_n_epochs=config.save_freq) + ) + if config.sample_freq is not None: + extensions.append( + GenText(m, '\nalex\ttu crois ?\n', + config.sample_len, config.sample_temperature, + every_n_epochs=config.sample_freq, + after_epoch=False, before_training=True) + ) + if config.on_irc: + irc = IRCClientExt(m, config.sample_temperature, + server='clipper.ens.fr', + port=6667, + nick='frigo', + channels=['#frigotest', '#courssysteme'], + after_batch=True) + irc.do('before_training') + extensions.append(irc) + + if config.on_irc: + irc = IRCClientExt(m, config.sample_temperature, + server='clipper.ens.fr', + port=6667, + nick='frigo', + channels=['#frigotest', '#courssysteme'], + after_batch=True) + irc.do('before_training') + extensions.append(irc) + + main_loop = MainLoop( + model=model, + data_stream=train_stream, + algorithm=algorithm, + extensions=extensions + ) + main_loop.run() + + # IRC mode : just load the parameters and run an IRC server + if '--irc' in sys.argv: + try: + extensions.append(FinishAfter(before_training=True, after_n_batches=1)) + print "Initializing main loop" + main_loop.run() + print "Jumping into IRC" + irc.run_forever() + except KeyboardInterrupt: + pass + sys.exit(0) + + + + + + + + +# vim: set sts=4 ts=4 sw=4 tw=0 et : @@ -125,5 +125,9 @@ class IRCClientExt(SimpleExtension): def do(self, which_callback, *args): logger.info('Polling...') self.irc.reactor.process_once() + + def run_forever(self): + self.irc.reactor.process_forever() +# vim: set sts=4 ts=4 sw=4 tw=0 et : diff --git a/model/__init__.py b/model/__init__.py new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/model/__init__.py diff --git a/cchlstm.py b/model/cchlstm.py index 78c9a1f..78c9a1f 100644 --- a/cchlstm.py +++ b/model/cchlstm.py diff --git a/dgsrnn.py b/model/dgsrnn.py index d6d93ff..d6d93ff 100644 --- a/dgsrnn.py +++ b/model/dgsrnn.py diff --git a/gfgru.py b/model/gfgru.py index 29d4398..29d4398 100644 --- a/gfgru.py +++ b/model/gfgru.py diff --git a/model/hpc_lstm.py b/model/hpc_lstm.py new file mode 100644 index 0000000..8c9cd90 --- /dev/null +++ b/model/hpc_lstm.py @@ -0,0 +1,115 @@ +# HPC-LSTM : Hierarchical Predictive Coding LSTM + +import theano +from theano import tensor +import numpy + +from blocks.bricks import Softmax, Tanh, Logistic, Linear, MLP, Identity +from blocks.bricks.recurrent import LSTM +from blocks.initialization import IsotropicGaussian, Constant + +from blocks.filter import VariableFilter +from blocks.roles import WEIGHT +from blocks.graph import ComputationGraph, apply_noise, apply_dropout + + +class Model(): + def __init__(self, config): + inp = tensor.imatrix('bytes') + + in_onehot = tensor.eq(tensor.arange(config.io_dim, dtype='int16').reshape((1, 1, config.io_dim)), + inp[:, :, None]) + in_onehot.name = 'in_onehot' + + bricks = [] + states = [] + + # Construct predictive LSTM hierarchy + hidden = [] + costs = [] + next_target = in_onehot.dimshuffle(1, 0, 2) + for i, (hdim, cf, q) in enumerate(zip(config.hidden_dims, config.cost_factors, config.hidden_q)): + init_state = theano.shared(numpy.zeros((config.num_seqs, hdim)).astype(theano.config.floatX), + name='st0_%d'%i) + init_cell = theano.shared(numpy.zeros((config.num_seqs, hdim)).astype(theano.config.floatX), + name='cell0_%d'%i) + + linear = Linear(input_dim=config.io_dim, output_dim=4*hdim, + name="lstm_in_%d"%i) + lstm = LSTM(dim=hdim, activation=config.activation_function, + name="lstm_rec_%d"%i) + linear2 = Linear(input_dim=hdim, output_dim=config.io_dim, name='lstm_out_%d'%i) + tanh = Tanh('lstm_out_tanh_%d'%i) + bricks += [linear, lstm, linear2, tanh] + + inter = linear.apply(theano.gradient.disconnected_grad(next_target)) + new_hidden, new_cells = lstm.apply(inter, + states=init_state, + cells=init_cell) + states.append((init_state, new_hidden[-1, :, :])) + states.append((init_cell, new_cells[-1, :, :])) + + hidden += [tensor.concatenate([init_state[None,:,:], new_hidden[:-1,:,:]],axis=0)] + pred = tanh.apply(linear2.apply(hidden[-1])) + diff = next_target - pred + costs += [numpy.float32(cf) * ((abs(next_target)+q)*(diff**2)).sum(axis=2).mean()] + next_target = diff + + + # Construct output from hidden states + hidden = [s.dimshuffle(1, 0, 2) for s in hidden] + + out_parts = [] + out_dims = config.out_hidden + [config.io_dim] + for i, (dim, state) in enumerate(zip(config.hidden_dims, hidden)): + pred_linear = Linear(input_dim=dim, output_dim=out_dims[0], + name='pred_linear_%d'%i) + bricks.append(pred_linear) + out_parts.append(pred_linear.apply(theano.gradient.disconnected_grad(state))) + + # Do prediction and calculate cost + out = sum(out_parts) + + if len(out_dims) > 1: + out = config.out_hidden_act[0](name='out_act0').apply(out) + mlp = MLP(dims=out_dims, + activations=[x(name='out_act%d'%i) for i, x in enumerate(config.out_hidden_act[1:])] + +[Identity()], + name='out_mlp') + bricks.append(mlp) + out = mlp.apply(out.reshape((inp.shape[0]*inp.shape[1],-1))).reshape((inp.shape[0],inp.shape[1],-1)) + + pred = out.argmax(axis=2) + + cost = Softmax().categorical_cross_entropy(inp.flatten(), + out.reshape((inp.shape[0]*inp.shape[1], + config.io_dim))).mean() + error_rate = tensor.neq(inp.flatten(), pred.flatten()).mean() + + sgd_cost = cost + sum(costs) + + # Initialize all bricks + for brick in bricks: + brick.weights_init = IsotropicGaussian(0.1) + brick.biases_init = Constant(0.) + brick.initialize() + + + # put stuff into self that is usefull for training or extensions + self.sgd_cost = sgd_cost + + sgd_cost.name = 'sgd_cost' + for i in range(len(costs)): + costs[i].name = 'pred_cost_%d'%i + cost.name = 'cost' + error_rate.name = 'error_rate' + self.monitor_vars = [costs, [cost], + [error_rate]] + + self.out = out + self.pred = pred + + self.states = states + + +# vim: set sts=4 ts=4 sw=4 tw=0 et : @@ -2,8 +2,7 @@ import theano from theano import tensor import numpy -from blocks.algorithms import Momentum, AdaDelta, RMSProp -from blocks.bricks import Tanh, Softmax, Linear, MLP +from blocks.bricks import Softmax, Linear from blocks.bricks.recurrent import LSTM from blocks.initialization import IsotropicGaussian, Constant @@ -11,75 +10,24 @@ from blocks.filter import VariableFilter from blocks.roles import WEIGHT from blocks.graph import ComputationGraph, apply_noise, apply_dropout -# An epoch will be composed of 'num_seqs' sequences of len 'seq_len' -# divided in chunks of lengh 'seq_div_size' -num_seqs = 20 -seq_len = 5000 -seq_div_size = 200 - -io_dim = 256 - -hidden_dims = [1024, 1024, 1024] -activation_function = Tanh() - -i2h_all = True # input to all hidden layers or only first layer -h2o_all = True # all hiden layers to output or only last layer - -w_noise_std = 0.02 -i_dropout = 0.5 - -l1_reg = 0 - -step_rule = 'adadelta' -learning_rate = 0.1 -momentum = 0.9 - - -param_desc = '%s-%sIH,%sHO-n%s-d%s-l1r%s-%dx%d(%d)-%s' % ( - repr(hidden_dims), - 'all' if i2h_all else 'first', - 'all' if h2o_all else 'last', - repr(w_noise_std), - repr(i_dropout), - repr(l1_reg), - num_seqs, seq_len, seq_div_size, - step_rule - ) - -save_freq = 5 -on_irc = True - -# parameters for sample generation -sample_len = 1000 -sample_temperature = 0.7 #0.5 -sample_freq = None - -if step_rule == 'rmsprop': - step_rule = RMSProp() -elif step_rule == 'adadelta': - step_rule = AdaDelta() -elif step_rule == 'momentum': - step_rule = Momentum(learning_rate=learning_rate, momentum=momentum) -else: - assert(False) class Model(): - def __init__(self): - inp = tensor.lmatrix('bytes') + def __init__(self, config): + inp = tensor.imatrix('bytes') - in_onehot = tensor.eq(tensor.arange(io_dim, dtype='int16').reshape((1, 1, io_dim)), + in_onehot = tensor.eq(tensor.arange(config.io_dim, dtype='int16').reshape((1, 1, config.io_dim)), inp[:, :, None]) in_onehot.name = 'in_onehot' # Construct hidden states - dims = [io_dim] + hidden_dims + dims = [config.io_dim] + config.hidden_dims hidden = [in_onehot.dimshuffle(1, 0, 2)] bricks = [] states = [] for i in xrange(1, len(dims)): - init_state = theano.shared(numpy.zeros((num_seqs, dims[i])).astype(theano.config.floatX), + init_state = theano.shared(numpy.zeros((config.num_seqs, dims[i])).astype(theano.config.floatX), name='st0_%d'%i) - init_cell = theano.shared(numpy.zeros((num_seqs, dims[i])).astype(theano.config.floatX), + init_cell = theano.shared(numpy.zeros((config.num_seqs, dims[i])).astype(theano.config.floatX), name='cell0_%d'%i) linear = Linear(input_dim=dims[i-1], output_dim=4*dims[i], @@ -87,14 +35,14 @@ class Model(): bricks.append(linear) inter = linear.apply(hidden[-1]) - if i2h_all and i > 1: + if config.i2h_all and i > 1: linear2 = Linear(input_dim=dims[0], output_dim=4*dims[i], name="lstm_in0_%d"%i) bricks.append(linear2) inter = inter + linear2.apply(hidden[0]) inter.name = 'inter_bis_%d'%i - lstm = LSTM(dim=dims[i], activation=activation_function, + lstm = LSTM(dim=dims[i], activation=config.activation_function, name="lstm_rec_%d"%i) bricks.append(lstm) @@ -111,10 +59,10 @@ class Model(): # Construct output from hidden states out = None layers = zip(dims, hidden)[1:] - if not h2o_all: + if not config.h2o_all: layers = [layers[-1]] for i, (dim, state) in enumerate(layers): - top_linear = Linear(input_dim=dim, output_dim=io_dim, + top_linear = Linear(input_dim=dim, output_dim=config.io_dim, name='top_linear_%d'%i) bricks.append(top_linear) out_i = top_linear.apply(state) @@ -126,7 +74,7 @@ class Model(): cost = Softmax().categorical_cross_entropy(inp[:, 1:].flatten(), out[:, :-1, :].reshape((inp.shape[0]*(inp.shape[1]-1), - io_dim))) + config.io_dim))).mean() error_rate = tensor.neq(inp[:, 1:].flatten(), pred[:, :-1].flatten()).mean() # Initialize all bricks @@ -137,24 +85,35 @@ class Model(): # Apply noise and dropout cg = ComputationGraph([cost, error_rate]) - if w_noise_std > 0: + if config.w_noise_std > 0: noise_vars = VariableFilter(roles=[WEIGHT])(cg) - cg = apply_noise(cg, noise_vars, w_noise_std) - if i_dropout > 0: - cg = apply_dropout(cg, hidden[1:], i_dropout) + cg = apply_noise(cg, noise_vars, config.w_noise_std) + if config.i_dropout > 0: + cg = apply_dropout(cg, hidden[1:], config.i_dropout) [cost_reg, error_rate_reg] = cg.outputs # add l1 regularization - if l1_reg > 0: + if config.l1_reg > 0: l1pen = sum(abs(st).mean() for st in hidden[1:]) - cost_reg = cost_reg + l1_reg * l1pen + cost_reg = cost_reg + config.l1_reg * l1pen + + cost_reg += 1e-10 # so that it is not the same Theano variable + error_rate_reg += 1e-10 + + # put stuff into self that is usefull for training or extensions + self.sgd_cost = cost_reg + + cost.name = 'cost' + cost_reg.name = 'cost_reg' + error_rate.name = 'error_rate' + error_rate_reg.name = 'error_rate_reg' + self.monitor_vars = [[cost, cost_reg], + [error_rate, error_rate_reg]] - self.cost = cost - self.error_rate = error_rate - self.cost_reg = cost_reg - self.error_rate_reg = error_rate_reg self.out = out self.pred = pred self.states = states + +# vim: set sts=4 ts=4 sw=4 tw=0 et : @@ -1,58 +1,37 @@ -#!/usr/bin/env python +#!/usr/bin/env python2 import logging -import numpy import sys import importlib -from contextlib import closing +logging.basicConfig(level='INFO') +logger = logging.getLogger(__name__) import theano -from theano import tensor -from theano.tensor.shared_randomstreams import RandomStreams -from blocks.serialization import load_parameter_values, secure_dump, BRICK_DELIMITER -from blocks.extensions import Printing, SimpleExtension +from blocks.extensions import Printing, SimpleExtension, FinishAfter, ProgressBar from blocks.extensions.monitoring import DataStreamMonitoring, TrainingDataMonitoring -from blocks.extensions.saveload import Checkpoint, Load + from blocks.graph import ComputationGraph from blocks.main_loop import MainLoop from blocks.model import Model -from blocks.algorithms import GradientDescent, StepRule, CompositeRule +from blocks.algorithms import GradientDescent try: from blocks.extras.extensions.plot import Plot plot_avail = True except ImportError: plot_avail = False + logger.warning('Plotting extension not available') + import datastream from paramsaveload import SaveLoadParams from gentext import GenText -from ircext import IRCClientExt -logging.basicConfig(level='INFO') -logger = logging.getLogger(__name__) sys.setrecursionlimit(500000) -if __name__ == "__main__": - if len(sys.argv) != 2: - print >> sys.stderr, 'Usage: %s config' % sys.argv[0] - sys.exit(1) - model_name = sys.argv[1] - config = importlib.import_module('%s' % model_name) - - -class ElementwiseRemoveNotFinite(StepRule): - def __init__(self, scaler=0.1): - self.scaler = scaler - - def compute_step(self, param, previous_step): - not_finite = tensor.isnan(previous_step) + tensor.isinf(previous_step) - step = tensor.switch(not_finite, self.scaler * param, previous_step) - - return step, [] class ResetStates(SimpleExtension): def __init__(self, state_vars, **kwargs): @@ -65,84 +44,75 @@ class ResetStates(SimpleExtension): def do(self, which_callback, *args): self.f() -def train_model(m, train_stream, dump_path=None): +if __name__ == "__main__": + if len(sys.argv) < 2: + print >> sys.stderr, 'Usage: %s [options] config' % sys.argv[0] + sys.exit(1) + model_name = sys.argv[-1] + config = importlib.import_module('.%s' % model_name, 'config') + + # Build datastream + train_stream = datastream.setup_datastream(config.dataset, + config.num_seqs, + config.seq_len, + config.seq_div_size) - # Define the model - model = Model(m.sgd_cost) + # Build model + m = config.Model(config) - cg = ComputationGraph(m.sgd_cost) + # Train the model + cg = Model(m.sgd_cost) algorithm = GradientDescent(cost=m.sgd_cost, - step_rule=CompositeRule([ - ElementwiseRemoveNotFinite(), - config.step_rule]), + step_rule=config.step_rule, parameters=cg.parameters) algorithm.add_updates(m.states) - monitor_vars = [v for p in m.monitor_vars for v in p] + monitor_vars = list(set(v for p in m.monitor_vars for v in p)) extensions = [ TrainingDataMonitoring( monitor_vars, - prefix='train', every_n_epochs=1), - Printing(every_n_epochs=1, after_epoch=False), + prefix='train', every_n_batches=config.monitor_freq), + Printing(every_n_batches=config.monitor_freq, after_epoch=False), + ProgressBar(), ResetStates([v for v, _ in m.states], after_epoch=True) ] if plot_avail: plot_channels = [['train_' + v.name for v in p] for p in m.monitor_vars] extensions.append( - Plot(document='text_'+model_name+'_'+config.param_desc, + Plot(document='text_'+model_name, channels=plot_channels, - server_url='http://eos6:5006/', - every_n_epochs=1, after_epoch=False) + # server_url='http://localhost:5006', + every_n_batches=config.monitor_freq) ) - if config.save_freq is not None and dump_path is not None: + + if config.save_freq is not None and not '--nosave' in sys.argv: extensions.append( - SaveLoadParams(path=dump_path+'.pkl', - model=model, - before_training=True, + SaveLoadParams(path='params/%s.pkl'%model_name, + model=cg, + before_training=(not '--noload' in sys.argv), after_training=True, - after_epoch=False, - every_n_epochs=config.save_freq) + every_n_batches=config.save_freq) ) + if config.sample_freq is not None: extensions.append( - GenText(m, '\nalex\ttu crois ?\n', + GenText(m, config.sample_init, config.sample_len, config.sample_temperature, - every_n_epochs=config.sample_freq, - after_epoch=False, before_training=True) - ) - if config.on_irc: - extensions.append( - IRCClientExt(m, config.sample_temperature, - server='irc.ulminfo.fr', - port=6667, - nick='frigo', - channels=['#frigotest', '#courssysteme'], - after_batch=True) + before_training=True, + every_n_batches=config.sample_freq) ) main_loop = MainLoop( - model=model, + model=cg, data_stream=train_stream, algorithm=algorithm, extensions=extensions ) main_loop.run() + main_loop.profile.report() -if __name__ == "__main__": - # Build datastream - train_stream = datastream.setup_datastream('data/logcompil.txt', - config.num_seqs, - config.seq_len, - config.seq_div_size) - - # Build model - m = config.Model() - m.pred.name = 'pred' - - # Train the model - saveloc = 'model_data/%s-%s' % (model_name, config.param_desc) - train_model(m, train_stream, dump_path=saveloc) +# vim: set sts=4 ts=4 sw=4 tw=0 et : |