#!/usr/bin/env python import sys import logging import importlib import csv from blocks.model import Model from fuel.transformers import Batch from fuel.streams import DataStream from fuel.schemes import ConstantScheme, ShuffledExampleScheme from blocks.algorithms import GradientDescent, AdaDelta, Momentum from blocks.graph import ComputationGraph from blocks.main_loop import MainLoop from blocks.extensions import Printing, FinishAfter from blocks.extensions.saveload import Dump, LoadFromDump, Checkpoint from blocks.extensions.monitoring import DataStreamMonitoring, TrainingDataMonitoring from blocks.extensions.plot import Plot from data import transformers from data.hdf5 import TaxiDataset, TaxiStream import apply_model if __name__ == "__main__": if len(sys.argv) != 2: print >> sys.stderr, 'Usage: %s config' % sys.argv[0] sys.exit(1) model_name = sys.argv[1] config = importlib.import_module('.%s' % model_name, 'config') def compile_valid_trip_ids(): valid = TaxiDataset(config.valid_set, 'valid.hdf5', sources=('trip_id',)) ids = valid.get_data(None, slice(0, valid.num_examples)) return set(ids[0]) def setup_train_stream(req_vars, valid_trips_ids): train = TaxiDataset('train') train = DataStream(train, iteration_scheme=ShuffledExampleScheme(train.num_examples)) train = transformers.TaxiExcludeTrips(valid_trips_ids, train) train = transformers.TaxiGenerateSplits(train, max_splits=100) train = transformers.TaxiAddDateTime(train) train = transformers.TaxiAddFirstLastLen(config.n_begin_end_pts, train) train = transformers.Select(train, tuple(req_vars)) train_stream = Batch(train, iteration_scheme=ConstantScheme(config.batch_size)) return train_stream def setup_valid_stream(req_vars): valid = TaxiStream(config.valid_set, 'valid.hdf5') valid = transformers.TaxiAddDateTime(valid) valid = transformers.TaxiAddFirstLastLen(config.n_begin_end_pts, valid) valid = transformers.Select(valid, tuple(req_vars)) valid_stream = Batch(valid, iteration_scheme=ConstantScheme(1000)) return valid_stream def setup_test_stream(req_vars): test = TaxiStream('test') test = transformers.TaxiAddDateTime(test) test = transformers.TaxiAddFirstLastLen(config.n_begin_end_pts, test) test = transformers.Select(test, tuple(req_vars)) test_stream = Batch(test, iteration_scheme=ConstantScheme(1000)) return test_stream def main(): model = config.model.Model(config) cost = model.cost outputs = model.outputs req_vars = model.require_inputs + model.pred_vars req_vars_test = model.require_inputs + [ 'trip_id' ] valid_trips_ids = compile_valid_trip_ids() train_stream = setup_train_stream(req_vars, valid_trips_ids) valid_stream = setup_valid_stream(req_vars) # Training cg = ComputationGraph(cost) params = cg.parameters algorithm = GradientDescent( cost=cost, # step_rule=AdaDelta(decay_rate=0.5), step_rule=Momentum(learning_rate=config.learning_rate, momentum=config.momentum), params=params) plot_vars = [['valid_' + x.name for x in model.monitor]] # plot_vars = ['valid_cost'] print "Plot: ", plot_vars extensions=[TrainingDataMonitoring(model.monitor, prefix='train', every_n_batches=1000), DataStreamMonitoring(model.monitor, valid_stream, prefix='valid', every_n_batches=1000), Printing(every_n_batches=1000), Plot(model_name, channels=plot_vars, every_n_batches=1000), # Checkpoint('model.pkl', every_n_batches=100), Dump('model_data/' + model_name, every_n_batches=1000), LoadFromDump('model_data/' + model_name), # FinishAfter(after_epoch=42), ] main_loop = MainLoop( model=Model([cost]), data_stream=train_stream, algorithm=algorithm, extensions=extensions) main_loop.run() main_loop.profile.report() # Produce an output on the test data test_stream = setup_test_stream(req_vars_test) if 'destination_longitude' in model.pred_vars: dest_outfile = open("output/test-dest-output-%s.csv" % model_name, "w") dest_outcsv = csv.writer(dest_outfile) dest_outcsv.writerow(["TRIP_ID", "LATITUDE", "LONGITUDE"]) if 'travel_time' in model.pred_vars: time_outfile = open("output/test-time-output-%s.csv" % model_name, "w") time_outcsv = csv.writer(time_outfile) time_outcsv.writerow(["TRIP_ID", "TRAVEL_TIME"]) for out in apply_model.Apply(outputs=outputs, stream=test_stream, return_vars=['trip_id', 'outputs']): outputs = out['outputs'] for i, trip in enumerate(out['trip_id']): if model.pred_vars == ['travel_time']: time_outcsv.writerow([trip, int(outputs[i])]) else: dest_outcsv.writerow([trip, repr(outputs[i, 0]), repr(outputs[i, 1])]) if 'travel_time' in model.pred_vars: time_outcsv.writerow([trip, int(outputs[i, 2])]) if __name__ == "__main__": logging.basicConfig(level=logging.INFO) main()