#!/usr/bin/env python2 import cPickle import importlib import logging import operator import os import sys from functools import reduce from theano import tensor from blocks import roles from blocks.algorithms import AdaDelta, CompositeRule, GradientDescent, RemoveNotFinite, StepRule from blocks.extensions import Printing, FinishAfter, SimpleExtension from blocks.extensions.monitoring import DataStreamMonitoring, TrainingDataMonitoring try: from blocks.extras.extensions.plotting import Plot use_plot = True except ImportError: use_plot = False from blocks.filter import VariableFilter from blocks.graph import ComputationGraph, apply_dropout, apply_noise from blocks.main_loop import MainLoop from blocks.model import Model logger = logging.getLogger(__name__) class ElementwiseRemoveNotFinite(StepRule): """A step rule that replaces non-finite coefficients by zeros. Replaces non-finite elements (such as ``inf`` or ``NaN``) in a step (the parameter update of a single shared variable) with a scaled version of the parameters being updated instead. Parameters ---------- scaler : float, optional The scaling applied to the parameter in case the step contains non-finite elements. Defaults to 0.1. Notes ----- This trick was originally used in the GroundHog_ framework. .. _GroundHog: https://github.com/lisa-groundhog/GroundHog """ def __init__(self, scaler=0.1): self.scaler = scaler def compute_step(self, param, previous_step): not_finite = tensor.isnan(previous_step) + tensor.isinf(previous_step) step = tensor.switch(not_finite, self.scaler * param, previous_step) return step, [] class SaveLoadParams(SimpleExtension): def __init__(self, path, model, **kwargs): super(SaveLoadParams, self).__init__(**kwargs) self.path = path self.model = model def do_save(self): with open(self.path, 'w') as f: logger.info('Saving parameters to %s...'%self.path) cPickle.dump(self.model.get_param_values(), f, protocol=cPickle.HIGHEST_PROTOCOL) def do_load(self): try: with open(self.path, 'r') as f: logger.info('Loading parameters from %s...'%self.path) self.model.set_param_values(cPickle.load(f)) except IOError: pass def do(self, which_callback, *args): if which_callback == 'before_training': self.do_load() else: self.do_save() if __name__ == "__main__": if len(sys.argv) != 2: print >> sys.stderr, 'Usage: %s config' % sys.argv[0] sys.exit(1) model_name = sys.argv[1] config = importlib.import_module('.%s' % model_name, 'config') logger.info('# Configuration: %s' % config.__name__) for key in dir(config): if not key.startswith('__') and isinstance(getattr(config, key), (int, str, list, tuple)): logger.info(' %20s %s' % (key, str(getattr(config, key)))) model = config.Model(config) model.initialize() stream = config.Stream(config) inputs = stream.inputs() req_vars = model.cost.inputs train_stream = stream.train(req_vars) valid_stream = stream.valid(req_vars) cost = model.cost(**inputs) cg = ComputationGraph(cost) monitored = set([cost] + VariableFilter(roles=[roles.COST])(cg.variables)) valid_monitored = monitored if hasattr(model, 'valid_cost'): valid_cost = model.valid_cost(**inputs) valid_cg = ComputationGraph(valid_cost) valid_monitored = set([valid_cost] + VariableFilter(roles=[roles.COST])(valid_cg.variables)) if hasattr(config, 'dropout') and config.dropout < 1.0: cg = apply_dropout(cg, config.dropout_inputs(cg), config.dropout) if hasattr(config, 'noise') and config.noise > 0.0: cg = apply_noise(cg, config.noise_inputs(cg), config.noise) cost = cg.outputs[0] cg = Model(cost) logger.info('# Parameter shapes:') parameters_size = 0 for key, value in cg.get_params().iteritems(): logger.info(' %20s %s' % (value.get_value().shape, key)) parameters_size += reduce(operator.mul, value.get_value().shape, 1) logger.info('Total number of parameters: %d in %d matrices' % (parameters_size, len(cg.get_params()))) params = cg.parameters algorithm = GradientDescent( cost=cost, step_rule=CompositeRule([ ElementwiseRemoveNotFinite(), AdaDelta(), #Momentum(learning_rate=config.learning_rate, momentum=config.momentum), ]), params=params) plot_vars = [['valid_' + x.name for x in valid_monitored]] logger.info('Plotted variables: %s' % str(plot_vars)) dump_path = os.path.join('model_data', model_name) + '.pkl' logger.info('Dump path: %s' % dump_path) extensions=[TrainingDataMonitoring(monitored, prefix='train', every_n_batches=1000), DataStreamMonitoring(valid_monitored, valid_stream, prefix='valid', every_n_batches=1000), Printing(every_n_batches=1000), SaveLoadParams(dump_path, cg, before_training=True, # before training -> load params every_n_batches=1000, # every N batches -> save params ), ] if use_plot: extensions.append(Plot(model_name, channels=plot_vars, every_n_batches=500)) main_loop = MainLoop( model=cg, data_stream=train_stream, algorithm=algorithm, extensions=extensions) main_loop.run() main_loop.profile.report()