import numpy import theano from theano import tensor from blocks.bricks import MLP, Rectifier, Linear, Sigmoid, Identity, Softmax from blocks.bricks.lookup import LookupTable from blocks.initialization import IsotropicGaussian, Constant import data import hdist class Model(object): def __init__(self, config): # The input and the targets x_firstk_latitude = (tensor.matrix('first_k_latitude') - data.porto_center[0]) / data.data_std[0] x_firstk_longitude = (tensor.matrix('first_k_longitude') - data.porto_center[1]) / data.data_std[1] x_lastk_latitude = (tensor.matrix('last_k_latitude') - data.porto_center[0]) / data.data_std[0] x_lastk_longitude = (tensor.matrix('last_k_longitude') - data.porto_center[1]) / data.data_std[1] input_list = [x_firstk_latitude, x_firstk_longitude, x_lastk_latitude, x_lastk_longitude] embed_tables = [] self.require_inputs = ['first_k_latitude', 'first_k_longitude', 'last_k_latitude', 'last_k_longitude'] for (varname, num, dim) in config.dim_embeddings: self.require_inputs.append(varname) vardata = tensor.lvector(varname) tbl = LookupTable(length=num, dim=dim, name='%s_lookup'%varname) embed_tables.append(tbl) input_list.append(tbl.apply(vardata)) y = tensor.concatenate((tensor.vector('destination_latitude')[:, None], tensor.vector('destination_longitude')[:, None]), axis=1) # Define the model mlp = MLP(activations=[Rectifier() for _ in config.dim_hidden] + [Softmax()], dims=[config.dim_input] + config.dim_hidden + [config.dim_output]) classes = theano.shared(numpy.array(config.tgtcls, dtype=theano.config.floatX), name='classes') # Create the Theano variables inputs = tensor.concatenate(input_list, axis=1) # inputs = theano.printing.Print("inputs")(inputs) cls_probas = mlp.apply(inputs) outputs = tensor.dot(cls_probas, classes) # outputs = theano.printing.Print("outputs")(outputs) # y = theano.printing.Print("y")(y) outputs.name = 'outputs' # Calculate the cost cost = hdist.erdist(outputs, y).mean() cost.name = 'cost' hcost = hdist.hdist(outputs, y).mean() hcost.name = 'hcost' # Initialization for tbl in embed_tables: tbl.weights_init = IsotropicGaussian(0.001) mlp.weights_init = IsotropicGaussian(0.01) mlp.biases_init = Constant(0.001) for tbl in embed_tables: tbl.initialize() mlp.initialize() self.cost = cost self.hcost = hcost self.outputs = outputs