from blocks.bricks import MLP, Rectifier, Linear, Sigmoid, Identity from blocks.bricks.lookup import LookupTable from blocks.initialization import IsotropicGaussian, Constant from theano import tensor import data import hdist class Model(object): def __init__(self, config): # The input and the targets x_firstk_latitude = (tensor.matrix('first_k_latitude') - data.porto_center[0]) / data.data_std[0] x_firstk_longitude = (tensor.matrix('first_k_longitude') - data.porto_center[1]) / data.data_std[1] x_lastk_latitude = (tensor.matrix('last_k_latitude') - data.porto_center[0]) / data.data_std[0] x_lastk_longitude = (tensor.matrix('last_k_longitude') - data.porto_center[1]) / data.data_std[1] x_client = tensor.lvector('origin_call') x_stand = tensor.lvector('origin_stand') y = tensor.concatenate((tensor.vector('destination_latitude')[:, None], tensor.vector('destination_longitude')[:, None]), axis=1) # Define the model client_embed_table = LookupTable(length=data.n_train_clients+1, dim=config.dim_embed, name='client_lookup') stand_embed_table = LookupTable(length=data.n_stands+1, dim=config.dim_embed, name='stand_lookup') mlp = MLP(activations=[Rectifier() for _ in config.dim_hidden] + [Identity()], dims=[config.dim_input] + config.dim_hidden + [config.dim_output]) # Create the Theano variables client_embed = client_embed_table.apply(x_client) stand_embed = stand_embed_table.apply(x_stand) inputs = tensor.concatenate([x_firstk_latitude, x_firstk_longitude, x_lastk_latitude, x_lastk_longitude, client_embed, stand_embed], axis=1) # inputs = theano.printing.Print("inputs")(inputs) outputs = mlp.apply(inputs) # Normalize & Center # outputs = theano.printing.Print("normal_outputs")(outputs) outputs = data.data_std * outputs + data.porto_center # outputs = theano.printing.Print("outputs")(outputs) # y = theano.printing.Print("y")(y) outputs.name = 'outputs' # Calculate the cost cost = hdist.erdist(outputs, y).mean() cost.name = 'cost' hcost = hdist.hdist(outputs, y).mean() hcost.name = 'hcost' # Initialization client_embed_table.weights_init = IsotropicGaussian(0.001) stand_embed_table.weights_init = IsotropicGaussian(0.001) mlp.weights_init = IsotropicGaussian(0.01) mlp.biases_init = Constant(0.001) client_embed_table.initialize() stand_embed_table.initialize() mlp.initialize() self.cost = cost self.hcost = hcost self.outputs = outputs