from blocks.bricks import MLP, Rectifier, Linear, Sigmoid, Identity from blocks.bricks.lookup import LookupTable from blocks.initialization import IsotropicGaussian, Constant from theano import tensor import data import hdist class Model(object): def __init__(self, config): # The input and the targets x_firstk_latitude = (tensor.matrix('first_k_latitude') - data.porto_center[0]) / data.data_std[0] x_firstk_longitude = (tensor.matrix('first_k_longitude') - data.porto_center[1]) / data.data_std[1] x_lastk_latitude = (tensor.matrix('last_k_latitude') - data.porto_center[0]) / data.data_std[0] x_lastk_longitude = (tensor.matrix('last_k_longitude') - data.porto_center[1]) / data.data_std[1] input_list = [x_firstk_latitude, x_firstk_longitude, x_lastk_latitude, x_lastk_longitude] embed_tables = [] self.require_inputs = ['first_k_latitude', 'first_k_longitude', 'last_k_latitude', 'last_k_longitude'] for (varname, num, dim) in config.dim_embeddings: self.require_inputs.append(varname) vardata = tensor.lvector(varname) tbl = LookupTable(length=num, dim=dim, name='%s_lookup'%varname) embed_tables.append(tbl) input_list.append(tbl.apply(vardata)) y = tensor.concatenate((tensor.vector('destination_latitude')[:, None], tensor.vector('destination_longitude')[:, None]), axis=1) # Define the model mlp = MLP(activations=[Rectifier() for _ in config.dim_hidden] + [Identity()], dims=[config.dim_input] + config.dim_hidden + [config.dim_output]) # Create the Theano variables inputs = tensor.concatenate(input_list, axis=1) # inputs = theano.printing.Print("inputs")(inputs) outputs = mlp.apply(inputs) # Normalize & Center # outputs = theano.printing.Print("normal_outputs")(outputs) outputs = data.data_std * outputs + data.porto_center # outputs = theano.printing.Print("outputs")(outputs) # y = theano.printing.Print("y")(y) outputs.name = 'outputs' # Calculate the cost cost = hdist.erdist(outputs, y).mean() cost.name = 'cost' hcost = hdist.hdist(outputs, y).mean() hcost.name = 'hcost' # Initialization for tbl in embed_tables: tbl.weights_init = IsotropicGaussian(0.001) mlp.weights_init = IsotropicGaussian(0.01) mlp.biases_init = Constant(0.001) for tbl in embed_tables: tbl.initialize() mlp.initialize() self.cost = cost self.hcost = hcost self.outputs = outputs