from theano import tensor from fuel.transformers import Batch, MultiProcessing, Merge from fuel.streams import DataStream from fuel.schemes import ConstantScheme, ShuffledExampleScheme, SequentialExampleScheme from blocks.bricks import application, MLP, Rectifier, Initializable, Softmax import data from data import transformers from data.cut import TaxiTimeCutScheme from data.hdf5 import TaxiDataset, TaxiStream import error from model import ContextEmbedder from memory_network import StreamSimple as Stream from memory_network import MemoryNetworkBase class MLPEncoder(Initializable): def __init__(self, config, output_dim, activation, **kwargs): super(RecurrentEncoder, self).__init__(**kwargs) self.config = config self.context_embedder = ContextEmbedder(self.config) self.encoder_mlp = MLP(activations=[Rectifier() for _ in config.prefix_encoder.dim_hidden] + [config.representation_activation()], dims=[config.prefix_encoder.dim_input] + config.prefix_encoder.dim_hidden + [config.representation_size], name='prefix_encoder') self.extremities = {'%s_k_%s' % (side, ['latitude', 'longitude'][axis]): axis for side in ['first', 'last'] for axis in [0, 1]} self.children = [ self.context_embedder, self.encoder_mlp ] def _push_initialization_config(self): for brick in [self.contex_encoder, self.encoder_mlp]: brick.weights_init = self.config.weights_init brick.biases_init = self.config.biases_init @application def apply(self, **kwargs): embeddings = tuple(self.context_embedder.apply( **{k: kwargs[k] for k in self.context_embedder.inputs })) extremities = tuple((kwargs[k] - data.train_gps_mean[v]) / data.train_gps_std[v] for k, v in self.prefix_extremities.items()) inputs = tensor.concatenate(extremities + embeddings, axis=1) return self.encoder_mlp.apply(inputs) @apply.property('inputs') def apply_inputs(self): return self.context_embedder.inputs + self.extremities.keys() class Model(MemoryNetworkBase): def __init__(self, config, **kwargs): prefix_encoder = MLPEncoder(config.prefix_encoder, config.representation_size, config.representation_activation()) candidate_encoer = MLPEncoder(config.candidate_encoder, config.representation_size, config.representation_activation()) super(Model, self).__init__(config, prefix_encoder, candidate_encoder, **kwargs)