from theano import tensor from blocks.bricks import application, MLP, Rectifier, Initializable, Softmax, Linear from blocks.bricks.parallel import Fork from blocks.bricks.recurrent import Bidirectional, LSTM import data from data import transformers from data.cut import TaxiTimeCutScheme from data.hdf5 import TaxiDataset, TaxiStream import error from model import ContextEmbedder from memory_network import StreamRecurrent as Stream from memory_network import MemoryNetworkBase from bidirectional import SegregatedBidirectional class RecurrentEncoder(Initializable): def __init__(self, config, output_dim, activation, **kwargs): super(RecurrentEncoder, self).__init__(**kwargs) self.config = config self.context_embedder = ContextEmbedder(config) self.rec = SegregatedBidirectional(LSTM(dim=config.rec_state_dim, name='encoder_recurrent')) self.fwd_fork = Fork([name for name in self.rec.prototype.apply.sequences if name!='mask'], prototype=Linear(), name='fwd_fork') self.bkwd_fork = Fork([name for name in self.rec.prototype.apply.sequences if name!='mask'], prototype=Linear(), name='bkwd_fork') rto_in = config.rec_state_dim * 2 + sum(x[2] for x in config.dim_embeddings) self.rec_to_output = MLP( activations=[Rectifier() for _ in config.dim_hidden] + [activation], dims=[rto_in] + config.dim_hidden + [output_dim], name='encoder_rto') self.children = [self.context_embedder, self.rec, self.fwd_fork, self.bkwd_fork, self.rec_to_output] self.rec_inputs = ['latitude', 'longitude', 'latitude_mask'] self.inputs = self.context_embedder.inputs + self.rec_inputs def _push_allocation_config(self): for i, fork in enumerate([self.fwd_fork, self.bkwd_fork]): fork.input_dim = 2 fork.output_dims = [ self.rec.children[i].get_dim(name) for name in fork.output_names ] def _push_initialization_config(self): for brick in self.children: brick.weights_init = self.config.weights_init brick.biases_init = self.config.biases_init @application def apply(self, latitude, longitude, latitude_mask, **kwargs): latitude = (latitude.T - data.train_gps_mean[0]) / data.train_gps_std[0] longitude = (longitude.T - data.train_gps_mean[1]) / data.train_gps_std[1] latitude_mask = latitude_mask.T rec_in = tensor.concatenate((latitude[:, :, None], longitude[:, :, None]), axis=2) path = self.rec.apply(merge(self.fwd_fork.apply(rec_in, as_dict=True), {'mask': latitude_mask}), merge(self.bkwd_fork.apply(rec_in, as_dict=True), {'mask': latitude_mask}))[0] last_id = tensor.cast(latitude_mask.sum(axis=0) - 1, dtype='int64') path_representation = (path[0][:, -self.config.rec_state_dim:], path[last_id - 1, tensor.arange(last_id.shape[0])] [:, :self.config.rec_state_dim]) embeddings = tuple(self.context_embedder.apply( **{k: kwargs[k] for k in self.context_embedder.inputs })) inputs = tensor.concatenate(path_representation + embeddings, axis=1) outputs = self.rec_to_output.apply(inputs) return outputs @apply.property('inputs') def apply_inputs(self): return self.inputs class Model(MemoryNetworkBase): def __init__(self, config, **kwargs): # Build prefix encoder : recurrent then MLP prefix_encoder = RecurrentEncoder(config.prefix_encoder, config.representation_size, config.representation_activation(), name='prefix_encoder') # Build candidate encoder candidate_encoder = RecurrentEncoder(config.candidate_encoder, config.representation_size, config.representation_activation(), name='candidate_encoder') # And... that's it! super(Model, self).__init__(config, prefix_encoder, candidate_encoder, **kwargs)